1
|
Yu C, Chen J, Wang T, Wang Y, Zhang X, Zhang Z, Wang Y, Yu T, Wu T. GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects. J Nanobiotechnology 2024; 22:696. [PMID: 39529025 PMCID: PMC11552337 DOI: 10.1186/s12951-024-02980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light. RESULTS Hydrogels comprise bioactive glass (BG) and PCL@GelMA coaxial nanofibers. The addition of BG and PCL@GelMA coaxial nanofibers improves the hydrogel's mechanical capabilities (353.22 ± 36.13 kPa) and stability while decreasing its swelling (258.78 ± 17.56%) and hydration (72.07 ± 1.44%) characteristics. This hydrogel composite demonstrates exceptional biocompatibility and angiogenesis, enhances osteogenic development in bone marrow mesenchymal stem cells (BMSCs), and dramatically increases the expression of critical osteogenic markers such as ALP, RUNX2, and OPN. The composite hydrogel significantly improves bone regeneration (25.08 ± 1.08%) in non-healing calvaria defects and promotes the increased expression of both osteogenic marker (OPN) and angiogenic marker (CD31) in vivo. The expression of OPN and CD31 in the composite hydrogel was up to 5 and 1.87 times higher than that of the control group at 12 weeks. CONCLUSION We successfully prepared a novel injectable composite hydrogel, and the design of the composite hydrogels shows significant potential for enhancing biocompatibility, angiogenesis, and improving osteogenic and angiogenic marker expression, and has a beneficial effect on producing an optimal microenvironment that promotes bone repair.
Collapse
Affiliation(s)
- Chenghao Yu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Yawen Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiaopei Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China
| | - Zhuoli Zhang
- Radiology, Pathology, and BME, University of California Irvine, Irvine, 92617, USA
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
3
|
Krishnan L, Chakrabarty P, Govarthanan K, Rao S, Santra TS. Bioglass and nano bioglass: A next-generation biomaterial for therapeutic and regenerative medicine applications. Int J Biol Macromol 2024; 277:133073. [PMID: 38880457 DOI: 10.1016/j.ijbiomac.2024.133073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Biomaterials are an indispensable component in tissue engineering that primarily functions to resemble the extracellular matrix of any tissue targeted for regeneration. In the last five decades, bioglass has been extensively used in the field of therapeutic and tissue engineering. The doping of metal components into bioglass and the synthesizing of nano bioglass particles have found remarkable implications, both in vivo and in vitro. These include various medical and biological applications such as rejuvenating tissues, facilitating regeneration, and delivering biomolecules into cells and therapy, etc. Therefore, the current review discusses the various techniques used in synthesizing bioglass particles, trends of various ion-doped nano bioglass, and their applications in therapy as well as in regenerative medicine, specifically in the fields of dentistry, cardiovascular, skin, nervous, and respiratory systems. Apart from these, this review also emphasizes the bioglass combined with diverse natural polymers (like collagen, chitosan, etc.) and their applications. Furthermore, we discuss the effectiveness of bioglass properties such as antibacterial effects, biomolecular delivery systems, tissue compatibility, and regenerative material. Finally, the prospects and limitations are elaborated.
Collapse
Affiliation(s)
- Lakshmi Krishnan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Govarthanan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Shearer A, Montazerian M, Sly JJ, Hill RG, Mauro JC. Trends and perspectives on the commercialization of bioactive glasses. Acta Biomater 2023; 160:14-31. [PMID: 36804821 DOI: 10.1016/j.actbio.2023.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
At least 25 bioactive glass (BG) medical devices have been approved for clinical use by global regulatory agencies. Diverse applications include monolithic implants, bone void fillers, dentin hypersensitivity agents, wound dressing, and cancer therapeutics. The morphology and delivery systems of bioactive glasses have evolved dramatically since the first devices based on 45S5 Bioglass®. The particle size of these devices has generally decreased with the evolution of bioactive glass technology but primarily lies in the micron size range. Morphologies have progressed from glass monoliths to granules, putties, and cements, allowing medical professionals greater flexibility and control. Compositions of these commercial materials have primarily relied on silicate-based systems with varying concentrations of sodium, calcium, and phosphorus. Furthermore, therapeutic ions have been investigated and show promise for greater control of biological stimulation of genetic processes and increased bioactivity. Some commercial products have exploited the borate and phosphate-based compositions for soft tissue repair/regeneration. Mesoporous BGs also promise anticancer therapies due to their ability to deliver drugs in combination with radiotherapy, photothermal therapy, and magnetic hyperthermia. The objective of this article is to critically discuss all clinically approved bioactive glass products. Understanding essential regulatory standards and rules for production is presented through a review of the commercialization process. The future of bioactive glasses, their promising applications, and the challenges are outlined. STATEMENT OF SIGNIFICANCE: Bioactive glasses have evolved into a wide range of products used to treat various medical conditions. They are non-equilibrium, non-crystalline materials that have been designed to induce specific biological activity. They can bond to bone and soft tissues and contribute to their regeneration. They are promising in combating pathogens and malignancies by delivering drugs, inorganic therapeutic ions, and heat for magnetic-induced hyperthermia or laser-induced phototherapy. This review addresses each bioactive glass product approved by regulatory agencies for clinical use. A review of the commercialization process is also provided with insight into critical regulatory standards and guidelines for manufacturing. Finally, a critical evaluation of the future of bioactive glass development, applications, and challenges are discussed.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials, Department of Materials Engineering, Federal University of Campina Grande, PB, Brazil
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert G Hill
- Institute of Dentistry, Dental Physical Sciences Unit, Queen Mary University of London, London, United Kingdom
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Abushahba F, Algahawi A, Areid N, Hupa L, Närhi T. Bioactive Glasses in Periodontal Regeneration
A Systematic Review
. Tissue Eng Part C Methods 2023; 29:183-196. [PMID: 37002888 DOI: 10.1089/ten.tec.2023.0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Bioactive glasses (BAGs) are surface-active ceramic materials that can be used in bone regeneration due to their known osteoconductive and osteoinductive properties. This systematic review aimed to study the clinical and radiographic outcomes of using BAGs in periodontal regeneration. The selected studies were collected from PubMed and Web of Science databases, and included clinical studies investigating the use of BAGs on periodontal bone defect augmentation between January 2000 and February 2022. The identified studies were screened using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A total of 115 full-length peer-reviewed articles were identified. After excluding duplicate articles between the databases and applying the inclusion and exclusion criteria, 14 studies were selected. The Cochrane risk of bias tool for randomized trials was used to assess the selected studies. Five studies compared using BAGs with open flap debridement (OFD) without grafting materials. Two of the selected studies were performed to compare the use of BAGs with protein-rich fibrin, one of which also included an additional OFD group. Also, one study evaluated BAG with biphasic calcium phosphate and used a third OFD group. The remaining six studies compared BAG filler with hydroxyapatite, demineralized freeze-dried bone allograft, autogenous cortical bone graft, calcium sulfate β-hemihydrate, enamel matrix derivatives, and guided tissue regeneration. This systematic review showed that using BAG to treat periodontal bone defects has beneficial effects on periodontal tissue regeneration. OSF Registration No.: 10.17605/OSF.IO/Y8UCR.
Collapse
Affiliation(s)
- Faleh Abushahba
- University of Turku, 8058, Department of Prosthetic Dentistry and Stomatognathic Physiology, Turku, Varsinais-Suomi, Finland,
| | - Ahmed Algahawi
- University of Turku, 8058, Department of Periodontology, Turku, Varsinais-Suomi, Finland,
| | - Nagat Areid
- University of Turku, 8058, Department of Prosthetic Dentistry and Stomatognathic Physiology Institute of Dentistry, University of Turku, Turku, Finland,
| | - Leena Hupa
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Turku, Finland,
| | - Timo Närhi
- University of Turku Faculty of Medicine, 60654, Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, Turku, Finland,
| |
Collapse
|
7
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Sol-gel silicate glass doped with silver for bone regeneration: Antibacterial activity, intermediate water, and cell death mode. BIOMATERIALS ADVANCES 2022; 138:212965. [PMID: 35913231 DOI: 10.1016/j.bioadv.2022.212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The hydration state of bioactive glass materials and its relationship with their biocompatibility have been receiving attention. In this research, silver-containing bioactive glasses (BGAgs) (Ag contents of 0.25, 0.5, and 1.0% in the glass system) were developed using the sol-gel method. Their physicochemical properties, size, morphology, and surface area were characterized by conducting X-rays diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The surface charges of the developed BGAgs were evaluated using the Nano Zetasizer. Moreover, the antibacterial activities and intermediate water (IW) contents of hydrated BGAgs were determined. Finally, BGAgs disks were tested against osteosarcoma (MG63) cell line to evaluate their death modes. The physicochemical characteristics of the BGAgs revealed no modifications after Ag doping. In comparison, relative changes were recorded in the particle size (20-33 to 16-29 nm), surface area (4.3 to 3.7 m2/g), and particle charge (-24 to -14.6 mV). Doping the current glass system with silver produced impressive amounts of IW, consistent with recorded proliferation rates of the cells when treated with BGAgs. The determined hydration states correlated with other findings in this research might be helpful in predicting and assessing the biological behaviors of BGAgs.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - Hanan H Beherei
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
9
|
Abstract
This paper describes the use of Bioglass ® Synthetic Bone Graft Particulate (PerioGlas™ /Consil™ ) in the treatment of osseous periodontal defects, and in post-extraction sites to maintain the vertical height and width of the alveolar ridge. The material is easy to use, inhibits epithelial down-growth, and acts as a mechanical hemostatic agent. Radiographic follow up in 36 dogs and 5 cats demonstrated significant bone fill. In the osseous periodontal defect treatment group, clinical probing depths decreased significantly, and there was an apparent gain in attachment level.
Collapse
|
10
|
Anbarasu A, Thomas N. Cone-beam computed tomography-assisted evaluation of the bone regenerative potential of modulated sol–gel-synthesized 45S5 bioglass intended for alveolar bone regeneration. J Pharm Bioallied Sci 2022; 14:S123-S126. [PMID: 36110815 PMCID: PMC9469350 DOI: 10.4103/jpbs.jpbs_667_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022] Open
|
11
|
Borden M, Westerlund LE, Lovric V, Walsh W. Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size. J Biomed Mater Res B Appl Biomater 2021; 110:910-922. [PMID: 34936202 PMCID: PMC9305884 DOI: 10.1002/jbm.b.34971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022]
Abstract
The ability of particulate bioactive glass to function as an effective bone graft material is directly related to its in vivo dissolution, ion release, and interparticle spacing (area associated with bone in‐growth). A spherical shape represents an optimal geometry to control bioactive glass bone formation properties. Spherical particles were fabricated from 45S5 bioactive glass with unimodal (90–180, 180–355, and 355–500 μm) and bimodal size ranges (180–355/355–500 and 90–180/355–500 μm). Particles were formed into bone graft putties and compared to a commercially available product composed of irregular 45S5 bioactive glass particles (32–710 μm). Scanning electron microscopy characterization of spherical particles showed a relatively uniform sphere shape and smooth surfaces. Irregular particles were characterized by random shapes with flat surfaces and sharp edges. X‐ray fluorescence and X‐ray diffraction indicated that the spheroidization process maintained the properties of 45S5 bioactive glass. Cross‐sectional micro‐computed tomography imaging of the putty samples demonstrated that smaller spheres and irregular particles resulted denser packing patterns compared to the larger spheres. Isolated particles were immersed in simulated body fluid for 14 days to measure silicon ion release and bioactivity. Inductively coupled plasma spectroscopy showed faster ion release from smaller particles due to increased surface area. Bioactivity characterization of 14‐day simulated body fluid exposed particle surfaces showed the presence of a hydroxycarbanoapatite mineral layer (characteristic of 45S5 bioactive glass) on all bioactive glass particles. Results demonstrated that spherical particles maintained the properties of the starting 45S5 bioactive glass, and that particle shape and size directly affected short‐term glass dissolution, ion release, and interparticle spacing.
Collapse
Affiliation(s)
- Mark Borden
- Synergy Biomedical, Wayne, Pennsylvania, USA
| | | | - Vedran Lovric
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - William Walsh
- Surgical and Orthopedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021; 9:8111-8147. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autografts and allografts. In this context, many biomaterials have been developed for regenerating tissues and are considered revolutionary in TE due to their flexibility, biocompatibility, and biodegradability. One such well-documented biomaterial is bioactive glasses (BGs), known for their osteoconductive and osteogenic potential and their abundant orthopedic and dental clinical applications. However, in the last few decades, the soft tissue regenerative potential of BGs has demonstrated great promise. Therefore, this review comprehensively covers the biological application of BGs in the repair and regeneration of tissues outside the skeleton system. BGs promote neovascularization, which is crucial to encourage host tissue integration with the implanted construct, making them suitable biomaterial scaffolds for TE. Moreover, they heal acute and chronic wounds and also have been reported to restore the injured superficial intestinal mucosa, aiding in gastroduodenal regeneration. In addition, BGs promote regeneration of the tissues with minimal renewal capacity like the heart and lungs. Besides, the peripheral nerve and musculoskeletal reparative properties of BGs are also reported. These results show promising soft tissue regenerative potential of BGs under preclinical settings without posing significant adverse effects. Albeit, there is limited bench-to-bedside clinical translation of elucidative research on BGs as they require rigorous pharmacological evaluations using standardized animal models for assessing biomolecular downstream pathways.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
13
|
Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5440. [PMID: 34576662 PMCID: PMC8470635 DOI: 10.3390/ma14185440] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
The use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass® 45S5, BonAlive® and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment. This paper aims to carefully review the main published investigations dealing with clinical trials in order to better understand the performance of bioactive glasses, evaluate challenges, and provide an essential source of information for the tailoring of their design in future applications. Finally, the paper highlights the need for further research and for specific studies intended to assess the effect of some specific dissolution products from bioactive glasses, focusing on their osteogenic and angiogenic potential.
Collapse
Affiliation(s)
- Maria Cannio
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Judith A. Roether
- Department of Materials Science and Engineering, Institute for Polymer Materials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| |
Collapse
|
14
|
Chauhan N, Lakhkar N, Chaudhari A. Development and physicochemical characterization of novel porous phosphate glass bone graft substitute and in vitro comparison with xenograft. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:60. [PMID: 33999295 PMCID: PMC8128851 DOI: 10.1007/s10856-021-06532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The process of bone regeneration in bone grafting procedures is greatly influenced by the physicochemical properties of the bone graft substitute. In this study, porous phosphate glass (PPG) morsels were developed and their physicochemical properties such as degradation, crystallinity, organic content, surface topography, particle size and porosity were evaluated using various analytical methods. The in vitro cytotoxicity of the PPG morsels was assessed and the interaction of the PPG morsels with Dental Pulp Stem Cells (DPSCs) was studied by measuring cell proliferation and cell penetration depth. The cell-material interactions between PPG morsels and a commercially available xenograft (XG) were compared. The PPG morsels were observed to be amorphous, biocompatible and highly porous (porosity = 58.45%). From in vitro experiments, PPG morsels were observed to be non-cytotoxic and showed better cell proliferation. The internal surface of PPG was easily accessible to the cells compared to XG.
Collapse
Affiliation(s)
- Niketa Chauhan
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Nilay Lakhkar
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Amol Chaudhari
- SynThera Biomedical Pvt. Ltd. 100, NCL Innovation Park, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
15
|
Thomas NG, Manoharan A, Anbarasu A. Preclinical Evaluation of Sol-gel Synthesized Modulated 45S5-Bioglass Based Biodegradable Bone Graft Intended for Alveolar Bone Regeneration. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Verma AS, Singh A, Kumar D, Dubey AK. Electro-mechanical and Polarization-Induced Antibacterial Response of 45S5 Bioglass-Sodium Potassium Niobate Piezoelectric Ceramic Composites. ACS Biomater Sci Eng 2020; 6:3055-3069. [PMID: 33463258 DOI: 10.1021/acsbiomaterials.0c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Besides the excellent osteoconductivity and biocompatibility of 45S5 bioglass (BG), poor mechanical and electrical properties as well as susceptibility toward bacterial adhesion limit its widespread clinical applications. In this context, the present study investigates the effect of addition of piezoelectric sodium potassium niobate (Na0.5K0.5NbO3; NKN) on mechanical, dielectric, and antibacterial response of BG. BG-xNKN (x = 0, 10, 20, and 30 vol%) composites were synthesized at 800 °C for 30 min. The phase analyses using spectral techniques revealed the formation of the composite without any reaction between BG and piezoelectric ceramic NKN. The dielectric and electrical measurements were performed over a wide range of temperature (30-500 °C) and frequency (1 Hz-1 MHz) which suggests that space charge and dipolar polarizations are the dominant polarization mechanisms. The complex impedance analyses suggest that the average activation energies for grain and grain boundary resistances for BG-xNKN (x = 10, 20, and 30 vol%) composites are 0.59, 0.87, 0.94 and 0.76, 0.93, 1.06 eV, respectively. The issue of bacterial infection has been addressed by electrical polarization of the developed composite samples, at 20 kV for 30 min. Statistical analyses reveal that the viability of Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial cells has been reduced significantly on positively and negatively charged BG-NKN composite samples, respectively. The qualitative analyses using the Kirby-Bauer test supports the above findings. Nitro blue tetrazolium and lipid peroxide assays were performed to understand the mechanism of such antibacterial response, which suggested that the combined effect of NKN addition and polarization significantly enhances the superoxide production, which kills the bacterial cells. Overall, incorporation of NKN in BG enhances the mechanical, electrical, and dielectric properties as well as improves the antibacterial response of polarized BG-xNKN composites.
Collapse
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| |
Collapse
|
17
|
Ab TK, T CN, Ps GD, Triveni MG, Mehta DS. A clinico-radiographic and histomorphometric analysis of alveolar ridge preservation using calcium phosphosilicate, PRF, and collagen plug. Maxillofac Plast Reconstr Surg 2019; 41:32. [PMID: 31523690 PMCID: PMC6717742 DOI: 10.1186/s40902-019-0215-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Background Tooth extraction commonly leads to loss of residual alveolar ridge, thus compromising the room available for the implant placement. To combat the post-extraction alveolar loss, alveolar ridge preservation is practiced, with the advent of the biomaterial available. The purpose of this study was to assess the efficiency of calcium phosphosilicate biomaterial in alveolar ridge preservation. Twenty patients indicated for extraction were selected followed by socket grafting using calcium phosphosilicate. Implant placement was done 6 months postoperatively during which a core was harvested from the preserved sockets. Clinico-radiographic measurements of hard and soft tissues were taken at baseline and 6 months post-grafting. Results There were no significant changes in the radiographic and soft tissue parameters while significant changes in hard tissue parameters with 1.9 mm (p = 0.013) gain in mid-buccal aspect and 1.1 mm (p = 0.019) loss in horizontal bone width were observed. The histomorphometric evaluation depicted the vital bone volume of 54.5 ± 16.76%, non-mineralized tissue 43.50 ± 15.80%, and residual material 2.00 ± 3.37%. Conclusion The implants placed in these preserved ridges presented 100% success rate with acceptable stability after a 1-year follow-up, concluding calcium phosphosilicate is a predictable biomaterial in alveolar ridge preservation.
Collapse
Affiliation(s)
- Tarun Kumar Ab
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Chaitra N T
- Happy smiles Dental Care, Vidyanagar, Davangere, Karnataka 577004 India
| | | | - M G Triveni
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| | - Dhoom Singh Mehta
- 1Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka 577004 India
| |
Collapse
|
18
|
Abstract
Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and scaffold design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to different processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation offers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.
Collapse
|
19
|
Surface Functionalization of Bioactive Glasses with Polyphenols from Padina pavonica Algae and In Situ Reduction of Silver Ions: Physico-Chemical Characterization and Biological Response. COATINGS 2019. [DOI: 10.3390/coatings9060394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioactive glasses (BGs) are attractive materials for bone replacement due to their tailorable chemical composition that is able to promote bone healing and repair. Accordingly, many attempts have been introduced to further improve BGs’ biological behavior and to protect them from bacterial infection, which is nowadays the primary reason for implant failure. Polyphenols from natural products have been proposed as a novel source of antibacterial agents, whereas silver is a well-known antibacterial agent largely employed due to its broad-ranged activity. Based on these premises, the surface of a bioactive glass (CEL2) was functionalized with polyphenols extracted from the Egyptian algae Padina pavonica and enriched with silver nanoparticles (AgNPs) using an in situ reduction technique only using algae extract. We analyzed the composite’s morphological and physical-chemical characteristics using FE-SEM, EDS, XPS and Folin–Ciocalteau; all analyses confirmed that both algae polyphenols and AgNPs were successfully loaded together onto the CEL2 surface. Antibacterial analysis revealed that the presence of polyphenols and AgNPs significantly reduced the metabolic activity (>50%) of Staphylococcus aureus biofilm in comparison with bare CEL2 controls. Finally, we verified the composite’s cytocompatibility with human osteoblasts progenitors that were selected as representative cells for bone healing advancement.
Collapse
|
20
|
Granel H, Bossard C, Nucke L, Wauquier F, Rochefort GY, Guicheux J, Jallot E, Lao J, Wittrant Y. Optimized Bioactive Glass: the Quest for the Bony Graft. Adv Healthc Mater 2019; 8:e1801542. [PMID: 30941912 DOI: 10.1002/adhm.201801542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Technological advances have provided surgeons with a wide range of biomaterials. Yet improvements are still to be made, especially for large bone defect treatment. Biomaterial scaffolds represent a promising alternative to autologous bone grafts but in spite of the numerous studies carried out on this subject, no biomaterial scaffold is yet completely satisfying. Bioactive glass (BAG) presents many qualifying characteristics but they are brittle and their combination with a plastic polymer appears essential to overcome this drawback. Recent advances have allowed the synthesis of organic-inorganic hybrid scaffolds combining the osteogenic properties of BAG and the plastic characteristics of polymers. Such biomaterials can now be obtained at room temperature allowing organic doping of the glass/polymer network for a homogeneous delivery of the doping agent. Despite these new avenues, further studies are required to highlight the biological properties of these materials and particularly their behavior once implanted in vivo. This review focuses on BAG with a particular interest in their combination with polymers to form organic-inorganic hybrids for the design of innovative graft strategies.
Collapse
Affiliation(s)
- Henri Granel
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Cédric Bossard
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Lisa Nucke
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Ressource Ecology‐Bautzner Landstraße 400 01328 Dresden Germany
| | - Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| | - Gael Y. Rochefort
- Faculté de Chirurgie Dentaire, Paris Descartes, EA2496, Laboratoires PathologiesImagerie et Biothérapies orofaciales 1 rue Maurice Arnoux 92120 Montrouge France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeSRegenerative Medicine and SkeletonUniversité de Nantes, Oniris Nantes, F‐44042 France
- UFR OdontologieUniversité de Nantes Nantes, F‐44042, France
- CHU Nantes, PHU4 OTONNNantes, F‐44093, France
| | - Edouard Jallot
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Jonathan Lao
- CNRS/IN2P3, Laboratoire de Physique de ClermontUniversité Clermont Auvergne BP 10448 F‐63000 Clermont‐Ferrand France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne F‐63009 Clermont‐Ferrand France
- Université d'Auvergne, Unité de Nutrition HumaineClermont Université BP 10448 F‐63000 Clermont‐Ferrand France
| |
Collapse
|
21
|
Kudyar N, Dani N, Abullais SS, AlQahtani NA, Gupta A, Attar N. The effects of autologous platelet concentrate on the healing of intra-bony defects: a randomized clinical trial. Eur Oral Res 2019; 53:38-43. [PMID: 31309191 PMCID: PMC6612763 DOI: 10.26650/eor.20192207101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The present study aimed to evaluate the clinical and radiographic effects of autologous platelet concentrate (APC) on the healing of intra-bony defects filled with β-tricalcium phosphate (β-TCP) and covered with collagen membranes. SUBJECTS AND METHODS This study included 30 defects of 14 systemically healthy subjects. All of them had, at least, two deep intra-bony, inter-proximal periodontal defects. Minimum probing pocket depth (PPD) was 6 mm. Clinical and imaging examination was performed both at baseline and at 3, 6, and 9 months after surgery. RESULTS Both the test and control group revealed a significant reduction in all variables when compared with the base line. Mean reduction of the PPD in two groups at each follow-up time point showed no significant difference. Means of the clinical attachment gain of the same groups were significantly different (p<0.05). Mean gingival recession at 3 month was not significant. However, the means of gingival recession coverage of two groups were significantly different at 6 and 9 months (p<0.05 for both). CONCLUSION Sites treated with APC are more likely to demonstrate more clinical attachment gain and recession coverage at the end of 9 month compared to those without APC.
Collapse
Affiliation(s)
- Nitin Kudyar
- Department of Periodontics Himachal Dental College, Mandi, Himachal Pradesh India
| | - Nitin Dani
- Department of Periodontics M.G.V Dental College and Hospital, Panchavati, Nasik, Maharashtra India
| | - Shabab Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha Saudi Arabia
| | - Nabeeh A. AlQahtani
- Department of Periodontics Himachal Dental College, Mandi, Himachal Pradesh India
| | - Aashima Gupta
- Department of Periodontics Himachal Dental College, Mandi, Himachal Pradesh India
| | - Nilofar Attar
- Department of Periodontics Himachal Dental College, Mandi, Himachal Pradesh India
| |
Collapse
|
22
|
Polo L, Díaz de Greñu B, Della Bella E, Pagani S, Torricelli P, Vivancos JL, Ruiz-Rico M, Barat JM, Aznar E, Martínez-Máñez R, Fini M, Sancenón F. Antimicrobial activity of commercial calcium phosphate based materials functionalized with vanillin. Acta Biomater 2018; 81:293-303. [PMID: 30273745 DOI: 10.1016/j.actbio.2018.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/22/2018] [Accepted: 09/23/2018] [Indexed: 02/09/2023]
Abstract
Infections represent one of the most frequent causes of arthroplasty revision. Thus, design of new antimicrobial scaffolds to reduce implant rejections, bone infections and associated medical costs is highly desired. In recent years, essential oil components (EOCs) have merged as compounds with significant antimicrobial activity that can be attached to specific surfaces to enhance and prolong their antimicrobial effect. Herein calcium phosphate CaP regenerative materials have been coated with a vanillin derivative to combine its original bone regeneration properties with antimicrobial action of EOCs. Materials in form of microparticles and blocks were prepared and fully characterized. Clonogenic viability tests demonstrated that low concentrations of material (10 mg·mL-1) resulted effective to kill 100% of E. coli DH5α bacteria. Additionally, vanillin containing scaffolds did not display any toxic effect over cells, yet they preserve the ability to express alkaline phosphatase (ALPL), collagen type 1, chain α1 (COL1A1) and bone gamma-carboxyglutamic acid-containing protein or osteocalcin (BGLAP), which are genes typically expressed by osteoblasts. These results demonstrate that commercially available scaffolds can be functionalized with EOCs, achieving antimicrobial activity and open up a new approach for the treatment and prevention of infection. STATEMENT OF SIGNIFICANCE: During the last years, the interest in bone regenerative materials with antibiotic properties has increased, since prosthesis infection is one of the most usual complications in implant surgery. In this work, we report a hybrid system composed by a calcium phosphate material (powders and scaffolds) functionalized with the derivative of an essential oil component (EOC). Our purpose was to provide the calcium phosphate material with antimicrobial activity without harming its bone regenerative capability. The obtained results were encouraging, which opens up the possibility of developing new modified materials for the prevention and treatment of bone infection.
Collapse
|
23
|
Esfahanizadeh N, Nourani MR, Bahador A, Akhondi N, Montazeri M. The Anti-biofilm Activity of Nanometric Zinc doped Bioactive Glass against Putative Periodontal Pathogens: An in vitro Study. BIOMEDICAL GLASSES 2018. [DOI: 10.1515/bglass-2018-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Colonization of periodontal pathogens on the surgical sites is one of the primary reasons for the failure of regenerative periodontal therapies. Bioactive glasses (BGs) owing to their favorable structural and antimicrobial properties have been proposed as promising materials for the reconstruction of periodontal and peri-implant bone defects. This study aimed to investigate the antibiofilm activity of zinc-doped BG (Zn/BG) compared with 45S5 Bioglass® (BG®) on putative periodontal pathogens. In this in vitro experimental study, the nano BG doped with 5-mol% zinc and BG® were synthesized by sol-gel method. Mono-species biofilms of Aggregatibacter actinomycetemcomitans (A. a), Porphyromonas gingivalis (P. g), and Prevotella intermedia (P. i)were prepared separately in a well-containing microplate. After 48 hours of exposure to generated materials at 37°C, the anti-biofilm potential of the samples was studied by measuring the optical density (OD) at 570nm wavelengths with a microplate reader. Two-way ANOVA then analyzed the results. Both Zn/BG and BG® significantly reduced the biofilm formation ability of all examined strains after 48 hours of incubation (P=0.0001). Moreover, the anti-biofilm activity of Zn/BG was significantly stronger than BG® (P=0.0001), which resulted in the formation of a weak biofilm (OD<1) compared with a moderately adhered biofilm observed with BG® (1<OD<2). Zn/BG showed a significant inhibitory effect on the biofilm formation of all examined periodontal pathogens. Given the enhanced regenerative and anti-biofilm properties of this novel biomaterial, further investigations are required for its implementation in clinical situations.
Collapse
|
24
|
Kong L, Wu Z, Zhao H, Cui H, Shen J, Chang J, Li H, He Y. Bioactive Injectable Hydrogels Containing Desferrioxamine and Bioglass for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30103-30114. [PMID: 30113159 DOI: 10.1021/acsami.8b09191] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic wound is hard to heal mainly because of the difficulty in vascularization in the wound area. Accumulating results have shown that desferrioxamine (DFO) can promote secretion of hypoxia inducible factor-1 (HIF-1α), thereby upregulating the expression of angiogenic growth factors and facilitating revascularization. Our preliminary study has demonstrated that Si ions in bioglass (BG) can upregulate vascular endothelial growth factor (VEGF) expression, thus promoting revascularization. It is hypothesized that the combined use of BG and DFO may have a synergistic effect in promoting VEGF expression and revascularization. To prove this, we first determined DFO concentration range that had no apparent cytotoxicity on human umbilical vein endothelial cells (HUVECs). Then, the optimal concentration of DFO promoting tube formation of HUVECs was determined by cell migration and tube formation assays. In addition, we demonstrated that combination use of BG and DFO improved the migration and tube formation of HUVECs as compared with the use of either BG or DFO alone as BG and DFO could synergistically upregulate VEGF expression. Furthermore, a sodium alginate hydrogel containing both BG and DFO was developed, and this hydrogel better facilitated diabetic skin wound healing than the use of either BG or DFO alone as BG and DFO in the hydrogels worked synergistically in promoting HIF-1α and VEGF expression and subsequently vascularization in the wound sites. Therefore, in this study, the synergistic effect in promoting revascularization between BG and DFO was first demonstrated and an injectable hydrogel simultaneously containing BG and DFO was developed for enhancing repair of diabetic chronic skin defects by taking advantages of the synergistic effects of BG and DFO in promoting revascularization. The study opens up a new prospect for the development of skin repair-promoting biomaterials.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | | | - Huakun Zhao
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Haomin Cui
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Ji Shen
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , China
| | | | - Yaohua He
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| |
Collapse
|
25
|
Sanz-Herrera JA, Soria L, Reina-Romo E, Torres Y, Boccaccini AR. Model of dissolution in the framework of tissue engineering and drug delivery. Biomech Model Mechanobiol 2018; 17:1331-1341. [PMID: 29789979 DOI: 10.1007/s10237-018-1029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.
Collapse
Affiliation(s)
- J A Sanz-Herrera
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain.
| | - L Soria
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain
| | - E Reina-Romo
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain
| | - Y Torres
- School of Engineering, University of Seville, Camino de los descubrimientos s/n, 41092, Seville, Spain
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
26
|
Kong CH, Steffi C, Shi Z, Wang W. Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering. J Biomed Mater Res B Appl Biomater 2018; 106:2878-2887. [PMID: 29722119 DOI: 10.1002/jbm.b.34143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
The incidence of bone disorders, from trauma, tissue degeneration due to ageing, pathological conditions to cancer, has been increasing. The pursuit for bone graft substitutes to assist in regenerating large bone defects is ever growing as a result of the shortage in conventional autografts and allografts, in addition to the associated risks of disease transmission. However, the use of alloplastic biomaterials is limited in clinical settings, as further investigations are required to address the properties of synthetic grafts to mimic the native bone tissue and deliver desirable biomolecules to facilitate bone regeneration. This review discusses the fundamental structure and properties of bone with the emphasis on organic and inorganic components that are important for the biomaterial design. The main focus will be on the advancement and usage of bioactive glass (BG) for bone tissue engineering due to its similarity to the natural inorganic constituent of bone. The various BG synthetic processes, modifications of composition, as well as the biomolecule delivery will be discussed in great detail. As the properties of BG are tuneable according to clinical needs, it creates a new paradigm in addition to displaying its superior potential for bone tissue engineering and translational medicine in the field of orthopedic surgery. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2878-2887, 2018.
Collapse
Affiliation(s)
- Chee Hoe Kong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Steffi
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhilong Shi
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
27
|
Shahbazi S, Zamanian A, Pazouki M, Jafari Y. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [PMID: 29525086 DOI: 10.1016/j.msec.2017.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells.
Collapse
Affiliation(s)
- Sara Shahbazi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran.
| | - Mohammad Pazouki
- Department of Energy, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Yaser Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
28
|
Jiang D, Jia W, Zhang C. [Research and application progress of bioactive glass in bone repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1512-1516. [PMID: 29806397 DOI: 10.7507/1002-1892.201705093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research and application progress of bioactive glass in bone repair. Methods The recently published literature concerning bioactive glass in bone repair was reviewed and summarized. Results Bioactive glass can classified different types, such as bioactive glass particulate, bioactive glass scaffold, bioactive glass coating, injectable bioactive glass cement, and bioactive glass delivery system. Bioactive glass has been well studied in the field of bone repair due to its excellent biological properties. Also, the remarkable progress has been made in various aspects. Conclusion Bioactive glass is a reliable material of bone repair and will play an even more important role in the future.
Collapse
Affiliation(s)
- Dajun Jiang
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200233, P.R.China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233,
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| |
Collapse
|
29
|
Saarenpää I, Stoor P, Frantzén J. BAG S53P4 putty as bone graft substitute – a rabbit model. BIOMEDICAL GLASSES 2017. [DOI: 10.1515/bglass-2017-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBioactive glass (BAG) S53P4 granules represent a bone augmentation biomaterial for the surgical treatment of bony defects, even in challenging conditions such as osteomyelitis. The aim of this eight-week rabbit implantation study was to evaluate the biocompatibility and bone regeneration performance of a BAG S53P4 putty formulation following its implantation into the proximal tibia bone of twenty-eight New Zealand white rabbits. BAG S53P4 putty was compared to BAG S53P4 granules (0.5-0.8 mm) to evaluate whether the synthetic putty binder influences the bone regeneration of the osteostimulative granules. The putty formulation facilitates clinical use because of its mouldability, injectability and ease of mixing with autograft. Implantation of putty and granules into proximal tibia defects resulted in good osseointegration of the two groups. Both biomaterials were biocompatible, showed high new bone formation, high vascularization and periosteal growth. No signs of disturbed bone formation were observed due to the PEG-glycerol binder in the BAG S53P4 putty. Instead, intramedullary ossification and stromal cell reaction were more advanced in the putty group compared to the control group (p = 0.001 and p < 0.001). In conclusion, the novel mouldable BAG S53P4 putty showed reliable bone regeneration in bony defects without adverse tissue or cell reactions.
Collapse
|
30
|
Naqvi A, Gopalakrishnan D, Bhasin MT, Sharma N, Haider K, Martande S. Comparative Evaluation of Bioactive Glass Putty and Platelet Rich Fibrin in the Treatment of Human Periodontal Intrabony Defects: A Randomized Control Trial. J Clin Diagn Res 2017; 11:ZC09-ZC13. [PMID: 28893033 PMCID: PMC5583776 DOI: 10.7860/jcdr/2017/23831.10149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/08/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Platelet-Rich Fibrin (PRF) and bioactive glass putty have been shown to be effective in promoting reduction in probing depth, gain in clinical attachment, and defect fill in intrabony periodontal defects. The individual role played by bioactive glass putty in combination with PRF is yet to be elucidated. AIM To compare the clinical effectiveness of the combination of PRF and bioactive glass putty and bioactive glass putty alone as regenerative techniques for intrabony defects in humans. MATERIALS AND METHODS Ten pairs of intrabony defects were surgically treated with PRF and bioactive glass putty (Test group) on one side or bioactive glass putty alone (Control group) on other side. The primary outcomes of the study included changes in probing depth; attachment level and bone fill of osseous defect. The clinical parameters were recorded at baseline, 3, 6, and 9 months. Radiographic assessment was done using standardized intraoral periapical radiographs. Differences between baseline and postoperative measurementsbetween the control and test groups were calculated using independent t-test. Comparisons were made within each group between baseline, 3 months, 6 months and 9 months using the ANOVA test followed by Bonferroni test. RESULTS The mean probing depth reduction was greater in the test group (bioactive glass putty and PRF) i.e., (3.2±2.3 mm) than in the control group (bioactive glass putty alone) i.e., (3.15±1.06 mm). The mean CAL gain was also greater in the test group (4.1±1.73 mm) as compared to the control group (3.15±1.06 mm), (p-value<0.95). Furthermore significantly greater mean bone fill was found in the test group (7.1±1.37 mm) as compared to the control group (5.7 ± 1.64 mm), (p-value<0.043). CONCLUSION The results of this study showed both the groups bioactive glass putty alone (Control Group) and the combination of PRF and bioactive glass putty (Test Group) are effective in the treatment of intrabony defects. The bioactive glass putty appears to be a suitable vehicle to administer biologic substances like PRF and growth factors to induce the new bone regeneration.
Collapse
Affiliation(s)
- Akbar Naqvi
- Lecturer, Department of Dentistry, HIMSR and HAHC Hospital, Hamdard University, New Delhi, India
| | - D. Gopalakrishnan
- Professor and Head, Department of Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Meenu Taneja Bhasin
- Associate Professor, Department of Periodontics and Oral Implantology, Santosh Dental College, Santosh University, Ghaziabad, Uttar Pradesh, India
| | - Nilima Sharma
- Associate Professor, Department of Dentistry, HIMSR and HAHC Hospital, Hamdard University, New Delhi, India
| | - Khushtar Haider
- Demonstrator, Department of Dentistry, Jhansi Medical College, Uttar Pradesh, India
| | - Santosh Martande
- Assistant Professor, Department of Dentistry, D.Y. Patil University, Pune, Maharashtra, India
| |
Collapse
|
31
|
|
32
|
El Shazley N, Hamdy A, El-Eneen HA, El Backly RM, Saad MM, Essam W, Moussa H, El Tantawi M, Jain H, Marei MK. Bioglass in Alveolar Bone Regeneration in Orthodontic Patients: Randomized Controlled Clinical Trial. JDR Clin Trans Res 2016; 1:244-255. [PMID: 30931746 DOI: 10.1177/2380084416660672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was designed as a split-mouth randomized controlled clinical trial to evaluate the effects of a novel bioactive glass scaffold-tailored amorphous multiporous (TAMP)-for the preservation of alveolar bone following tooth extraction in class II orthodontic patients. TAMP scaffolds were prepared and sterilized. Patients were screened for eligibility, and 6 patients accounting for 14 extraction sockets were included in this stage. Sockets were randomly allocated to either control (left empty) or test (grafted with TAMP scaffold particles). Follow-up was done after 1, 2, 4, 8, and 12 to 17 wk with digital periapical radiographs to evaluate changes in crestal bone height and bone mineral density (BMD), 3-dimensional volumetric analysis of impression casts, and histologic analysis of core biopsies. Furthermore, alveolar bone marrow mesenchymal stem cells were cultured from control and test sockets following biopsy retrieval to evaluate the ability of TAMP bioactive glass scaffolds to recruit host progenitor cells. Results showed that sockets grafted with TAMP bioactive glass scaffolds better preserved height after 3 mo where mesially 57.1% of test cases showed preservation of socket height, compared with 28.6% of control cases. Distally, this was 42.9% of test cases versus none of the control cases. Regarding BMD, the test sides had higher BMD in all 3 sections of the socket, with the greatest reduction in BMD found in the coronal third. Results were not statistically significant. Histologically, sockets grafted with TAMP bioactive glass scaffolds showed a distinct pattern of bone healing characterized by vertical trabeculae and large vascularized marrow spaces with sockets showing corticalization. Volumetric analysis showed a better preservation of socket contour with TAMP bioactive glass scaffolds. TAMP bioactive glass scaffolds appeared to enhance the recruitment of stem cells from the grafted sockets. In conclusion, TAMP scaffolds appear to better preserve alveolar bone following extraction and allow for a more active bone modeling and remodeling process( ClinicalTrials.gov identifier:NCT01878084). Knowledge Transfer statement: The results of this study set the stage for the recommended use of novel biomimetic scaffolds, such as the tailored amorphous multiporous bioactive glass for preservation of the socket following extraction. This can be valuable for patients and clinicians alike when deciding on long-term prosthetic alternatives that not only result in immediate bone preservation but will accommodate the dynamic nature of bone.
Collapse
Affiliation(s)
- N El Shazley
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - A Hamdy
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - H A El-Eneen
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - R M El Backly
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,3 Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - M M Saad
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,4 Oral Biology Department, Faculty of Dentistry, Pharos University, Alexandria, Egypt
| | - W Essam
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,5 Department of Pedodontics and Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - H Moussa
- 6 Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - M El Tantawi
- 7 Department of Preventive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia
| | - H Jain
- 8 Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - M K Marei
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,9 Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
LEE JH, SEO SJ, KIM HW. Bioactive glass-based nanocomposites for personalized dental tissue regeneration. Dent Mater J 2016; 35:710-720. [DOI: 10.4012/dmj.2015-428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jung-Hwan LEE
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
| | - Seog-Jin SEO
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
- Department of Nanobiomedical Science, Dankook University
| | - Hae-Won KIM
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University
- Department of Nanobiomedical Science, Dankook University
- BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University
- Department of Biomaterials Science, College of Dentistry, Dankook University
| |
Collapse
|
34
|
Hench LL, Jones JR. Bioactive Glasses: Frontiers and Challenges. Front Bioeng Biotechnol 2015; 3:194. [PMID: 26649290 PMCID: PMC4663244 DOI: 10.3389/fbioe.2015.00194] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/11/2015] [Indexed: 11/13/2022] Open
Abstract
Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass(®). The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.
Collapse
Affiliation(s)
- Larry L. Hench
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, UK
| |
Collapse
|
35
|
Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater 2015; 23 Suppl:S53-82. [PMID: 26235346 DOI: 10.1016/j.actbio.2015.07.019] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.
Collapse
Affiliation(s)
- Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW. Investigating the addition of SiO2–CaO–ZnO–Na2O–TiO2 bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity. J Biomater Appl 2015; 30:495-511. [DOI: 10.1177/0885328215592866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2–CaO–ZnO–Na2O–TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.
Collapse
Affiliation(s)
| | - Lana M Placek
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| | - Declan J Curran
- Faculty of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Mark R Towler
- Faculty of Mechanical & Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
- Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony W Wren
- Inamori School of Engineering, Alfred University, Alfred, NY, USA
| |
Collapse
|
37
|
Sowmya S, Chennazhi KP, Arzate H, Jayachandran P, Nair SV, Jayakumar R. Periodontal Specific Differentiation of Dental Follicle Stem Cells into Osteoblast, Fibroblast, and Cementoblast. Tissue Eng Part C Methods 2015; 21:1044-58. [PMID: 25962715 DOI: 10.1089/ten.tec.2014.0603] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The dental follicle is a source of dental follicle stem cells (DFCs), which have the potential to differentiate into the periodontal lineage. DFCs therefore are of value in dental tissue engineering. The purpose of this study was to evaluate the effect of growth factor type and concentration on DFC differentiation into periodontal specific lineages. DFCs were isolated from the human dental follicle and characterized for the expression of mesenchymal markers. The cells were positive for CD-73, CD-44, and CD-90; and negative for CD-33, CD-34, and CD-45. The expression of CD-29 and CD-31 was almost negligible. The cells also expressed periodontal ligament and cementum markers such as periodontal ligament-associated protein-1 (PLAP-1), fibroblast growth factor-2 (FGF-2), and cementum protein-1 (CEMP-1), however, the expression of osteoblast markers was absent. Further, the DFCs were cultured in three different induction medium to analyze the osteoblastic, fibroblastic, and cementoblastic differentiation. Runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) activity, alizarin staining, calcium quantification, collagen type-1 (Col-1), and osteopontin (OPN) expression confirmed the osteoblastic differentiation of DFCs. DFCs cultured in recombinant human FGF-2 (rhFGF-2) containing medium showed enhanced PLAP-1, FGF-2, and COL-1 expression with increasing concentration of rhFGF-2 which thereby confirmed periodontal ligament fibroblastic differentiation. Similarly, DFCs cultured in recombinant human cementum protein-1 (rhCEMP-1) containing medium showed enhanced bone sialoprotein-2 (BSP-2), CEMP-1, and COL-1 expression with respect to rhCEMP-1 which confirmed cementoblastic differentiation. The expression of osteoblast, fibroblast, and cementoblast-related genes of DFCs cultured in induction medium was enhanced in comparison to DFCs cultured in noninduction medium. Thus, growth factor-dependent differentiation of DFCs into periodontal specific lineages was proved by quantitative analysis.
Collapse
Affiliation(s)
- S Sowmya
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - K P Chennazhi
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Higinio Arzate
- 2 Laboratorio de Biologia Periodontal, Facultad de Odontologia, Universidad Nacional Autnoma de Mexico , Mexico City, Mexico
| | - P Jayachandran
- 3 Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Shantikumar V Nair
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - R Jayakumar
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| |
Collapse
|
38
|
Hench LL. The future of bioactive ceramics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:86. [PMID: 25644100 DOI: 10.1007/s10856-015-5425-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics.
Collapse
Affiliation(s)
- Larry L Hench
- Department of Biomedical Engineering, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL, 32901, USA,
| |
Collapse
|
39
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
40
|
Bioactive Glass: Chronology, Characterization, and Genetic Control of Tissue Regeneration. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
41
|
Abdulmajeed AA, Kokkari AK, Käpylä J, Massera J, Hupa L, Vallittu PK, Närhi TO. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:151-162. [PMID: 24022800 DOI: 10.1007/s10856-013-5040-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.
Collapse
|
42
|
Vere KA, Richens JL, Lane JS, Harris HJ, Duggan J, O'Shea P. Evidence for sodium metasilicate receptors on the human osteoblast cell surface; spatial localization and binding properties. Mol Membr Biol 2013; 30:386-93. [PMID: 24147954 DOI: 10.3109/09687688.2013.843031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report details of the interaction of sodium metasilicate with osteoblast cellular membranes using Fluoresceinphosphatidylethanolamine (FPE) as a fluorescent indicator of membrane interactions. Fluorescence imaging studies of the FPE-based indicator system revealed areas of localized binding that would be consistent with the presence of a structure with 'receptor-like' properties. From these results, it seems unlikely that silica binds 'non-specifically' to the osteoblast surface. Moreover, the receptors are localized into membrane domains. Such regions of the cell membrane could well be structures such as 'rafts' or other such localized domains within the membrane. The binding profile of silica with the osteoblast cell surface takes place with all the characteristics of a receptor-mediated process best represented by a cooperativity (sigmoidal) binding model with a Hill coefficient of 3.6.
Collapse
Affiliation(s)
- Kelly-Ann Vere
- Cell Biophysics Group, Institute of Biophysics, Imaging and Optical Science (IBIOS), School of Life Sciences, University of Nottingham , Nottingham , UK
| | | | | | | | | | | |
Collapse
|
43
|
Sohrabi M, Hesaraki S, Kazemzadeh A. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors andin vitroresponses: Hyaluronic acidversussodium alginate. J Biomed Mater Res B Appl Biomater 2013; 102:561-73. [DOI: 10.1002/jbm.b.33035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/04/2013] [Accepted: 08/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Mehri Sohrabi
- Nanotechnology and Advanced Materials Research, Materials & Energy Research Center; Alborz Iran
| | - Saeed Hesaraki
- Nanotechnology and Advanced Materials Research, Materials & Energy Research Center; Alborz Iran
| | - Asghar Kazemzadeh
- Nanotechnology and Advanced Materials Research, Materials & Energy Research Center; Alborz Iran
| |
Collapse
|
44
|
Treatment of a Large Cystic Lesion in Anterior Maxilla Using Glass Reinforced Hydroxyapatite – A Case Report. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/ssp.207.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Jaw cysts are common lesions in the maxillofacial area. Their treatment varies from surgical enucleation alone to enucleation followed by bone grafting depending on the size of the lesion. Various bone substitutes ranging from autografts, allografts, xenografts and alloplasts have been tried and tested with varying degrees of success. Here, the author present a case report of large cystic lesion of anterior maxilla and its treatment using a glass reinforced hydroxyapatite composite (Bonelike®) following enucleation. One year follow up demonstrated satisfactory clinical and radiological treatment outcomes.Keywords: Jaw cyst, enucleation, defect filling, alloplast, Bonelike®, bone grafts.
Collapse
|
45
|
Grover V, Kapoor A, Malhotra R, Uppal RS. Evaluation of the efficacy of a bioactive synthetic graft material in the treatment of intrabony periodontal defects. J Indian Soc Periodontol 2013; 17:104-10. [PMID: 23633783 PMCID: PMC3636927 DOI: 10.4103/0972-124x.107484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 09/12/2012] [Indexed: 11/06/2022] Open
Abstract
Background: Bioactive ceramic fillers are synthetic materials which have shown the potential to enhance bone formation. The purpose of this study was to evaluate the efficacy of a bioactive synthetic graft material in the treatment of intrabony periodontal defects. Materials and Methods: Fourteen intrabony defects in twelve systemically healthy subjects having moderate to severe chronic periodontitis were evaluated after bone grafting with bioactive ceramic filler for a period of 6 months. Clinical and radiographic evaluations were made at baseline, at 3 and 6 months following surgery. Results: Mean radiographic defect fill of 64.76% (2.49±0.5 mm) was observed in 6 months, which was statistically significant. A statistically significant relative attachment level gain of 2.71±1.13 mm and probing pocket depth reduction of 4.21±1.18 mm was recorded at the end of the study. A significant decrease in mobility and gingival index was observed. Conclusions: Bioactive glass is an efficacious treatment option for the reconstruction of intrabony periodontal defects as it led to statistically significant improvements in the clinical and radiographic parameters.
Collapse
Affiliation(s)
- Vishakha Grover
- Department of Periodontology and Oral Implantology, National Dental College and Hospital, Derabassi, Punjab, India
| | | | | | | |
Collapse
|
46
|
Abstract
Advancement of materials technology has been immense, especially in the past 30 years. Ceramics has not been new to dentistry. Porcelain crowns, silica fillers in composite resins, and glass ionomer cements have already been proved to be successful. Materials used in the replacement of tissues have come a long way from being inert, to compatible, and now regenerative. When hydroxyapatite was believed to be the best biocompatible replacement material, Larry Hench developed a material using silica (glass) as the host material, incorporated with calcium and phosphorous to fuse broken bones. This material mimics bone material and stimulates the regrowth of new bone material. Thus, due to its biocompatibility and osteogenic capacity it came to be known as "bioactive glass-bioglass." It is now encompassed, along with synthetic hydroxyapatite, in the field of biomaterials science known as "bioactive ceramics." The aim of this article is to give a bird's-eye view, of the various uses in dentistry, of this novel, miracle material which can bond, induce osteogenesis, and also regenerate bone.
Collapse
Affiliation(s)
- Vidya Krishnan
- Professor and Head of the Department of Oral Medicine and Radiology, SRM Kattankulathur Dental College and Hospitals, Chennai, India
| | - T. Lakshmi
- Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, India
| |
Collapse
|
47
|
Saffarian Tousi N, Velten MF, Bishop TJ, Leong KK, Barkhordar NS, Marshall GW, Loomer PM, Aswath PB, Varanasi VG. Combinatorial effect of Si4+, Ca2+, and Mg2+ released from bioactive glasses on osteoblast osteocalcin expression and biomineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2757-65. [PMID: 23623093 DOI: 10.1016/j.msec.2013.02.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/12/2013] [Accepted: 02/23/2013] [Indexed: 11/25/2022]
Abstract
Osteocalcin (OCN) expression is an essential osteogenic marker of successful bone regeneration therapies. This study hypothesizes that Si(4+) and Ca(2+) combinatorial released by bioactive glass enhance osteoblast biomineralization through up-regulation of OCN expression; and Mg(2+) release delays such enhancement. Osteoblasts (MC3T3-E1) were treated with ionic products of bioactive glass dissolution (6P53-b experimental bioactive glass and 45S5 commercial Bioglass™). Results showed that gene expressions, including OCN and its up-stream transcription factors (Runx2, ATF4, MSX1, SP7/OSX), growth factors and signaling proteins (BMP2, BMP6, SMAD3), were enhanced in both 45S5 and 6P53-b glass conditioned mediums (GCMs). This up-regulation led to enhanced mineral formation by 45S5 glass conditioned mediums ([GCM], Si(4+)+Ca(2+)) after 20 days, and by 45S5 GCM and 6P53-b GCM (Si(4+)+Ca(2+)+Mg(2+)) after 30 days. In examining the extracellular matrix generated by cells when exposed to each GCM, it was found that 45S5 GCM had slightly elevated levels of mineral content within ECM as compared to 6P53-b GCM after 30 days while control treatments exhibited no mineral content. The formation of well-defined mineralized nodules (distinct PO4(3-) [960 cm(-1)] and CO3(2-) [1072 cm(-1)] peaks from Raman Spectra) was observed for each GCM as the soluble glass content increased. In examining the individual and combined ion effects between Si(4+), Ca(2+), and Mg(2+), it was found Mg(2+) down-regulates OCN expression. Thus, ions released from both 45S5 and 6P53-b bioactive glasses up-regulate OCN expression and biomineralization while 6P53-b GCM Mg(2+) release down-regulated OCN expression and delayed osteoblast biomineralization. These results indicate that Si(4+), Ca(2+), and Mg(2+) combinatorially regulate osteoblast OCN expression and biomineralization.
Collapse
Affiliation(s)
- Neda Saffarian Tousi
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A & M Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9:4457-86. [PMID: 22922331 DOI: 10.1016/j.actbio.2012.08.023] [Citation(s) in RCA: 1043] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022]
Abstract
Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.
Collapse
Affiliation(s)
- Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|