1
|
Su D, Lu J, Nie C, Guo Z, Li C, Yu Q, Xie J, Chen Y. Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells. Foods 2023; 12:foods12061318. [PMID: 36981244 PMCID: PMC10048136 DOI: 10.3390/foods12061318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was to investigate the effects of AA and OTA individually and collectively on Caco-2 cells. The results showed that AA and OTA significantly inhibited Caco-2 cell viability in a concentration- and time-dependent manner, decreased transepithelial electrical resistance (TEER) values, and increased the lucifer yellow (LY) permeabilization, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) levels. In addition, the levels of IL-1β, IL-6, and TNF-α increased, while the levels of IL-10 decreased after AA and OTA treatment. Western blot analysis revealed that AA and OTA damaged the intestinal barrier by reducing the expression of the tight junction (TJ) protein. The collective effects of AA and OTA exhibited enhanced toxicity compared to either single compound and, for most of the intestinal barrier function indicators, AA and OTA combined exposure tended to produce synergistic toxicity to Caco-2 cells. Overall, this research suggests the possibility of toxic reactions arising from the interaction of toxic substances present in foodstuffs with those produced during processing.
Collapse
Affiliation(s)
- Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiawen Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chunchao Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ziyan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
2
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
3
|
Schelstraete W, Devreese M, Croubels S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem Toxicol 2020; 137:111140. [PMID: 32004578 DOI: 10.1016/j.fct.2020.111140] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
Mycotoxins frequently contaminate food and feed materials, posing a threat to human and animal health. Fusarium species produce important mycotoxins with regard to their occurrence and toxicity, especially deoxynivalenol (DON), fumonisin B1 (FB1), zearalenone (ZEN) and T-2 toxin (T-2). The susceptibility of an animal species towards the effects of these toxins in part depends on the absorption, distribution, metabolism and excretion (ADME processes) of these toxins from the body. For humans, in vivo information is scarce and often animal data is used for extrapolation to humans. From a kinetic and safety point of view, the pig seems to be a promising animal model to aid in the assessment of the toxicological risk of mycotoxins to humans. Qualitatively, the ADME processes seem to be quite similar between pigs and humans. In addition, similar metabolite and excretion patterns are observed, although some quantitative differences are noticed which are subject of this review. The high sensitivity of pigs towards mycotoxins and the similar kinetics are an advantage for the use of this animal species in the risk assessment of mycotoxins, and for the establishment of legal limits of mycotoxins.
Collapse
Affiliation(s)
- Wim Schelstraete
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
4
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
5
|
Sun X, Tang Q, Du X, Xi C, Tang B, Wang G, Zhao H. Simultaneous Determination of Ractopamine, Chloramphenicol, and Zeranols in Animal-Originated Foods by LC-MS/MS Analysis with Immunoaffinity Clean-up Column. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0858-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal Caco-2 cells. Food Chem Toxicol 2016; 98:232-239. [DOI: 10.1016/j.fct.2016.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/02/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022]
|
7
|
Effects of Dietary Exposure to Zearalenone (ZEN) on Carp (Cyprinus carpio L.). Toxins (Basel) 2015; 7:3465-80. [PMID: 26343724 PMCID: PMC4591655 DOI: 10.3390/toxins7093465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023] Open
Abstract
The mycotoxin zearalenone (ZEN) is frequently contaminating animal feeds including feed used in aquaculture. In the present study, the effects of dietary exposure to ZEN on carp (Cyprinus carpio L.) were investigated. ZEN at three different concentrations (low dose: 332 µg kg−1, medium dose: 621 µg kg−1 and high dose: 797 µg kg−1 final feed, respectively) was administered to juvenile carp for four weeks. Additional groups received the mycotoxin for the same time period but were fed with the uncontaminated diet for two more weeks to examine the reversibility of the ZEN effects. No effects on growth were observed during the feeding trial, but effects on haematological parameters occurred. In addition, an influence on white blood cell counts was noted whereby granulocytes and monocytes were affected in fish treated with the medium and high dose ZEN diet. In muscle samples, marginal ZEN and α-zearalenol (α-ZEL) concentrations were detected. Furthermore, the genotoxic potential of ZEN was confirmed by analysing formation of micronuclei in erythrocytes. In contrast to previous reports on other fish species, estrogenic effects measured as vitellogenin concentrations in serum samples were not increased by dietary exposure to ZEN. This is probably due to the fact that ZEN is rapidly metabolized in carp.
Collapse
|
8
|
Mukherjee D, Royce SG, Alexander JA, Buckley B, Isukapalli SS, Bandera EV, Zarbl H, Georgopoulos PG. Physiologically-based toxicokinetic modeling of zearalenone and its metabolites: application to the Jersey girl study. PLoS One 2014; 9:e113632. [PMID: 25474635 PMCID: PMC4256163 DOI: 10.1371/journal.pone.0113632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 12/02/2022] Open
Abstract
Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements, including a systematic characterization of uncertainties in exposure and dose estimation for a vulnerable population.
Collapse
Affiliation(s)
- Dwaipayan Mukherjee
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steven G. Royce
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jocelyn A. Alexander
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sastry S. Isukapalli
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Elisa V. Bandera
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Panos G. Georgopoulos
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Pietsch C, Noser J, Wettstein FE, Burkhardt-Holm P. Unraveling the mechanisms involved in zearalenone-mediated toxicity in permanent fish cell cultures. Toxicon 2014; 88:44-61. [PMID: 24950048 DOI: 10.1016/j.toxicon.2014.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022]
Abstract
The world-wide occurrence of zearalenone (ZEN) as a contaminant in feed for farm animals and fish requires the evaluation of toxicity mechanisms of action of ZEN. The present study investigates possible metabolization of ZEN in fish cell lines suggesting that mainly glucuronidation takes place. It demonstrates that concentrations up to 20,000 ng ml(-1) ZEN are capable of influencing cell viability in permanent fish cell cultures in a dose-response manner with different response patterns between the five tested cell lines, whereby lysosomes appeared to be the main target of ZEN. ZEN toxicity is often discussed in the context of oxidative stress. Our study shows a biphasic response of the cell lines when reactive oxygen species (ROS) production is monitored. Damage in cells was observed by measuring lipid peroxidation, DNA strand breaks, and alterations of intracellular glutathione levels. Metabolization of ZEN, especially at concentrations above 7500 ng ml(-1) ZEN, does not prevent cytotoxicity. ZEN as an estrogenic compound may involve processes mediated by binding to estrogen receptors (ER). Since one cell line showed no detectable expression of ER, an ER-mediated pathway seems to be unlikely in these cells. This confirms a lysosomal pathway as a main target of ZEN in fish cells.
Collapse
Affiliation(s)
- Constanze Pietsch
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland; Programm Man - Society - Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | - Jürg Noser
- Kantonales Laboratorium Basel, Gräubernstrasse 12, CH-4410 Liestal, Switzerland
| | - Felix E Wettstein
- Agroscope Reckenholz-Tänikon (ART), Research Station ART, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Patricia Burkhardt-Holm
- Programm Man - Society - Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland; Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, T6G 2E9, Edmonton, AB, Canada
| |
Collapse
|
10
|
Yiannikouris A, Kettunen H, Apajalahti J, Pennala E, Moran CA. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1641-50. [PMID: 23844575 DOI: 10.1080/19440049.2013.809625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sequestration/inactivation of the oestrogenic mycotoxin zearalenone (ZEA) by two adsorbents--yeast cell wall extract (YCW) and hydrated sodium calcium aluminosilicate (HSCAS)--was studied in three laboratory models: (1) an in vitro model was adapted from referenced methods to test for the sequestrant sorption capabilities under buffer conditions at two pH values using liquid chromatography coupled to a fluorescence detector for toxin quantification; (2) a second in vitro model was used to evaluate the sequestrant sorption stability according to pH variations and using ³H-labelled ZEA at low toxin concentration; and (3) an original, ex vivo Ussing chamber model was developed to further understand the transfer of ZEA through intestinal tissue and the impact of each sequestrant on the mycotoxin bioavailability of ³H-labelled ZEA. YCW was a more efficient ZEA adsorbent than HSCAS in all three models, except under very acidic conditions (pH 2.5 or 3.0). The Ussing chamber model offered a novel, ex vivo, alternative method for understanding the effect of sequestrant on the bioavailability of ZEA. The results showed that compared with HSCAS, YCW was more efficient in sequestering ZEA and that it reduced the accumulation of ZEA in the intestinal tissue by 40% (p < 0.001).
Collapse
|
11
|
Pfeiffer E, Kommer A, Dempe JS, Hildebrand AA, Metzler M. Absorption and metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro. Mol Nutr Food Res 2010; 55:560-7. [PMID: 21462323 DOI: 10.1002/mnfr.201000381] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/25/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022]
Abstract
SCOPE Zearalenone (ZEN) and α-zearalanol (α-ZAL, zeranol) were studied in differentiated Caco-2 cells and in the Caco-2 Millicell® system in vitro to simulate their in vivo intestinal absorption and metabolism in humans. METHODS AND RESULTS In addition to metabolic reduction/oxidation, extensive conjugation with glucuronic acid and sulfate of the parent compounds and their phase I metabolites was observed. The positional isomers of the glucuronides and sulfates were unambiguously identified: Sulfonation occurred specifically at the 14-hydroxyl group, whereas glucuronidation was less specific and, in addition to the preferred 14-hydroxyl group, involved the 16- and 7-hydroxyl groups. Using the Caco-2 Millicell® system, an efficient transfer of the glucuronides and sulfates of ZEN and α-ZAL and their phase I metabolites into both the basolateral and the apical compartment was observed after apical administration. The apparent permeability coefficients (P(app) values) of ZEN, α-ZAL and the ZEN metabolite α-zearalenol were determined, using an initial apical concentration of 20 μM and a permeation time of 1 h. CONCLUSION According to the P(app) values, the three compounds are expected to be extensively and rapidly absorbed from the intestinal lumen in vivo and reach the portal blood both as aglycones and as glucuronide and sulfate conjugates in humans.
Collapse
Affiliation(s)
- Erika Pfeiffer
- Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
12
|
Shephard G, Berthiller F, Dorner J, Krska R, Lombaert G, Malone B, Maragos C, Sabino M, Solfrizzo M, Trucksess M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2008-2009. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2009.1172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2008 and mid-2009. It covers the major mycotoxins: aflatoxins, alternaria toxins, cyclopiazonic acid, fumonisins, ochratoxin, patulin, trichothecenes and zearalenone. Developments in mycotoxin analysis continue, with emphasis on novel immunological methods and further description of LC-MS and LC-MS/MS, particularly as multimycotoxin applications for different ranges of mycotoxins. Although falling outside the main emphasis of the review, some aspects of natural occurrence have been mentioned, especially if linked to novel method developments.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - J. Dorner
- USDA, ARS, National Peanut Research Laboratory, P.O. Box 509, 1011 Forrester Dr SE, Dawson, GA 31742, USA
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - G. Lombaert
- Health Canada, 510 Lagimodiere Blvd., Winnipeg, MB, R2J 3Y1, Canada
| | - B. Malone
- Trilogy Analytical Laboratory, 111 West Fourth Street, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902, São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - M. Trucksess
- US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - H. van Egmond
- RIKILT, Cluster Natural Toxins & Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T. Whitaker
- Biological and Agricultural Engineering Department, P.O. Box 7625, N.C. State University, Raleigh, NC 27695-7625 USA
| |
Collapse
|