1
|
Marzec J, Nadadur S. Countermeasures against Pulmonary Threat Agents. J Pharmacol Exp Ther 2024; 388:560-567. [PMID: 37863486 PMCID: PMC10801713 DOI: 10.1124/jpet.123.001822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Inhaled toxicants are used for diverse purposes, ranging from industrial applications such as agriculture, sanitation, and fumigation to crowd control and chemical warfare, and acute exposure can induce lasting respiratory complications. The intentional release of chemical warfare agents (CWAs) during World War I caused life-long damage for survivors, and CWA use is outlawed by international treaties. However, in the past two decades, chemical warfare use has surged in the Middle East and Eastern Europe, with a shift toward lung toxicants. The potential use of industrial and agricultural chemicals in rogue activities is a major concern as they are often stored and transported near populated areas, where intentional or accidental release can cause severe injuries and fatalities. Despite laws and regulatory agencies that regulate use, storage, transport, emissions, and disposal, inhalational exposures continue to cause lasting lung injury. Industrial irritants (e.g., ammonia) aggravate the upper respiratory tract, causing pneumonitis, bronchoconstriction, and dyspnea. Irritant gases (e.g., acrolein, chloropicrin) affect epithelial barrier integrity and cause tissue damage through reactive intermediates or by direct adduction of cysteine-rich proteins. Symptoms of CWAs (e.g., chlorine gas, phosgene, sulfur mustard) progress from airway obstruction and pulmonary edema to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which results in respiratory depression days later. Emergency treatment is limited to supportive care using bronchodilators to control airway constriction and rescue with mechanical ventilation to improve gas exchange. Complications from acute exposure can promote obstructive lung disease and/or pulmonary fibrosis, which require long-term clinical care. SIGNIFICANCE STATEMENT: Inhaled chemical threats are of growing concern in both civilian and military settings, and there is an increased need to reduce acute lung injury and delayed clinical complications from exposures. This minireview highlights our current understanding of acute toxicity and pathophysiology of a select number of chemicals of concern. It discusses potential early-stage therapeutic development as well as challenges in developing countermeasures applicable for administration in mass casualty situations.
Collapse
Affiliation(s)
- Jacqui Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Srikanth Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
2
|
Cao C, Zhang L, Shen J. Phosgene-Induced acute lung injury: Approaches for mechanism-based treatment strategies. Front Immunol 2022; 13:917395. [PMID: 35983054 PMCID: PMC9378823 DOI: 10.3389/fimmu.2022.917395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phosgene (COCl2) gas is a chemical intermediate of high-volume production with numerous industrial applications worldwide. Due to its high toxicity, accidental exposure to phosgene leads to various chemical injuries, primarily resulting in chemical-induced lung injury due to inhalation. Initially, the illness is mild and presents as coughing, chest tightness, and wheezing; however, within a few hours, symptoms progress to chronic respiratory depression, refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute to acute respiratory distress syndrome or even death in severe cases. Despite rapid advances in medicine, effective treatments for phosgene-inhaled poisoning are lacking. Elucidating the pathophysiology and pathogenesis of acute inhalation toxicity caused by phosgene is necessary for the development of appropriate therapeutics. In this review, we discuss extant literature on relevant mechanisms and therapeutic strategies to highlight novel ideas for the treatment of phosgene-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Zhang
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
3
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
4
|
Hobson ST, Richieri RA, Parseghian MH. Phosgene: toxicology, animal models, and medical countermeasures. Toxicol Mech Methods 2021; 31:293-307. [PMID: 33588685 DOI: 10.1080/15376516.2021.1885544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.
Collapse
Affiliation(s)
- Stephen T Hobson
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.,Rubicon Biotechnology, Irvine, CA, USA
| | | | | |
Collapse
|
5
|
Hobson ST, Casillas RP, Richieri RA, Nishimura RN, Weisbart RH, Tuttle R, Reynolds GT, Parseghian MH. Development of an acute, short-term exposure model for phosgene. Toxicol Mech Methods 2019; 29:604-615. [PMID: 31237465 DOI: 10.1080/15376516.2019.1636170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosgene is classified as a chemical warfare agent, yet data on its short-duration high concentration toxicity in a nose-only exposure rat model is sparse and inconsistent. Hence, an exposure system for short-term/high concentration exposure was developed and characterized. Herein, we report the median lethal concentration (LC50) for a 10-min nasal exposure of phosgene in a 24-h rat survival model. Male Wistar rats (Envigo) weighing 180-210 g on the day of exposure, were exposed to phosgene gas via nose-only inhalation using a system specifically designed to allow the simultaneous exposure and quantification of phosgene. After 24 h, the surviving rats were euthanized, the lung/body mass ratio determined, and lung tissues analyzed for histopathology. Increased terminal airway edema in the lungs located primarily at the alveoli (resulting in an increased lung/body mass ratio) coincided with the observed mortality. An LC50 value of 129.2 mg/m3 for a 10-min exposure was determined. Furthermore, in agreement with other highly toxic compounds, this study reveals a LC50 concentration value supportive of a nonlinear toxic load model, where the toxic load exponent is >1 (ne = 1.17). Thus, in line with other chemical warfare agents, phosgene toxicity is predicted to be more severe with short-duration, high-concentration exposures than long-duration, low-concentration exposures. This model is anticipated to be refined and developed to screen novel therapeutics against relevant short-term high concentration phosgene exposures expected from a terrorist attack, battlefield deployment, or industrial accident.
Collapse
Affiliation(s)
- Stephen T Hobson
- Rubicon Biotechnology , Anaheim , CA , USA.,Department of Biology and Chemistry, Liberty University , Lynchburg , VA , USA
| | | | | | - Robert N Nishimura
- University of California, Los Angeles, School of Medicine , Los Angeles , CA , USA.,Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles , CA , USA
| | - Richard H Weisbart
- University of California, Los Angeles, School of Medicine , Los Angeles , CA , USA.,Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles , CA , USA
| | | | | | | |
Collapse
|
6
|
Li W, Pauluhn J. Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine. Clin Transl Med 2017; 6:19. [PMID: 28577109 PMCID: PMC5457389 DOI: 10.1186/s40169-017-0149-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phosgene (carbonyl dichloride) gas is an indispensable chemical inter-mediate used in numerous industrial processes. There is no clear consensus as to its time- and inhaled-dose-dependent etiopathologies and associated preventive or therapeutic treatment strategies. METHODS Cardiopulmonary function was examined in rats exposed by inhalation to the alveolar irritant phosgene or to the airway irritant chlorine during and following exposure. Terminal measurements focused on hematology, protein extravasation in bronchoalveolar lavage (BAL), and increased lung weight. Noninvasive diagnostic and prognostic endpoints in exhaled breath (carbon dioxide and nitric oxide) were used to detect the clinically occult stage of pulmonary edema. RESULTS The first event observed in rats following high but sublethal acute exposure to phosgene was the stimulation of alveolar nociceptive vagal receptors. This afferent stimulation resulted in dramatic changes in cardiopulmonary functions, ventilation: perfusion imbalances, and progressive pulmonary edema and phospholipoproteinosis. Hematology revealed hemoconcentration to be an early marker of pulmonary edema and fibrin as a discriminating endpoint that was positive for the airway irritant chlorine and negative for the alveolar irritant phosgene. CONCLUSIONS The application of each gas produced typical ALI/ARDS (acute lung injury/acute respiratory distress syndrome) characteristics. Phosgene-induced ALI showed evidence of persistent apnea periods, bradycardia, and shifts of vascular fluid from the peripheral to the pulmonary circulation. Carbon dioxide in expired gas was suggestive of increased ventilation dead space and appeared to be a harbinger of progressively developing lung edema. Treatment with the iNOS inhibitor aminoguanidine aerosol by inhalation reduced the severity of phosgene-induced ALI when applied at low dose-rates. Symptomatic treatment regimens were considered inferior to causal modes of treatment.
Collapse
Affiliation(s)
- Wenli Li
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
| | - Juergen Pauluhn
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
- Covestro Deutschland AG, Global Phosgene Steering Group, K9, 565, 51365 Leverkusen, Germany
| |
Collapse
|
7
|
da Rosa JS, de Mello SVGV, Vicente G, Moon YJK, Daltoé FP, Lima TC, de Jesus Souza R, Biavatti MW, Fröde TS. Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice. Int Immunopharmacol 2017; 42:139-149. [DOI: 10.1016/j.intimp.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/27/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
|
8
|
Filipczak PT, Senft AP, Seagrave J, Weber W, Kuehl PJ, Fredenburgh LE, McDonald JD, Baron RM. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury. Toxicol Sci 2015; 146:89-100. [PMID: 25870319 DOI: 10.1093/toxsci/kfv072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment.
Collapse
Affiliation(s)
- Piotr T Filipczak
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Albert P Senft
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - JeanClare Seagrave
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Waylon Weber
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip J Kuehl
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura E Fredenburgh
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacob D McDonald
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rebecca M Baron
- *Environmental Respiratory Health and Chemistry and Inhalation Exposure Programs, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|