1
|
Yao D, Li M, Wang K, Jin S, Zeng W, Liao Z, Chen E, Liang Y, Xing T, Wen G, Liang C, Su K, Lu S, Che Z, Li Y, Huang L. Emodin ameliorates matrix degradation and apoptosis in nucleus pulposus cells and attenuates intervertebral disc degeneration through LRP1 in vitro and in vivo. Exp Cell Res 2023; 432:113794. [PMID: 37741491 DOI: 10.1016/j.yexcr.2023.113794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with a strong correlation to intervertebral disc degeneration (IDD). Inflammation-induced extracellular matrix (ECM) degradation plays a major role in IDD's progression. Emodin, known for its anti-inflammatory effects and ability to inhibit ECM degradation in osteoarthritis, but its role in IDD is unclear. Our study aimed to explore emodin's role and mechanisms on IDD both in vivo and in vitro. We discovered that emodin positively regulated anabolic markers (COL2A1, aggrecan) and negatively impacted catabolic markers (MMP3, MMP13) in nucleus pulposus cells, while also inhibiting cell apoptosis under inflammation environment. We revealed that emodin inhibits inflammation-induced NF-ĸB activation by suppressing the degradation of LRP1 via the proteasome pathway. Additionally, LRP1 was validated as essential to emodin's regulation of ECM metabolism and apoptosis, both in vitro and in vivo. Ultimately, we demonstrated that emodin effectively alleviates IDD in a rat model. Our findings uncover the novel pathway of emodin inhibiting ECM degradation and apoptosis through the inhibition of NF-κB via LRP1, thus alleviating IDD. This study not only broadens our understanding of emodin's role and mechanism in IDD treatment but also guides future therapeutic interventions.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Song Jin
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuwei Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tong Xing
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Guoming Wen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Changchun Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Kaihui Su
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shixin Lu
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhen Che
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Zhu Z, Zhai Y, Hao Y, Wang Q, Han F, Zheng W, Hong J, Cui L, Jin W, Ma S, Yang L, Cheng G. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides. J Extracell Vesicles 2022; 11:e12255. [PMID: 35932288 PMCID: PMC9451528 DOI: 10.1002/jev2.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/04/2022] [Accepted: 07/22/2022] [Indexed: 01/06/2023] Open
Abstract
Glioma is one of the primary malignant brain tumours in adults, with a poor prognosis. Pharmacological reagents targeting glioma are limited to achieve the desired therapeutic effect due to the presence of blood-brain barrier (BBB). Effectively crossing the BBB and specifically targeting to the brain tumour are the major challenge for the glioma treatments. Here, we demonstrate that the well-defined small extracellular vesicles (sEVs) with dual-targeting drug delivery and cell-penetrating functions, modified by Angiopep-2 and trans-activator of transcription peptides, enable efficient and specific chemotherapy for glioma. The high efficiency of engineered sEVs in targeting BBB and glioma was assessed in both monolayer culture cells and BBB model in vitro, respectively. The observed high targeting efficiency was re-validated in subcutaneous tumour and orthotopic glioma mice models. After loading the doxorubicin into dual-modified functional sEVs, this specific dual-targeting delivery system could cross the BBB, reach the glioma, and penetrate the tumour. Such a mode of drug delivery significantly improved more than 2-fold survival time of glioma mice with very few side effects. In conclusion, utilization of the dual-modified sEVs represents a unique and efficient strategy for drug delivery, holding great promise for the treatments of central nervous system diseases.
Collapse
Affiliation(s)
- Zhanchi Zhu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yuanxin Zhai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Ying Hao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong, China
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Fang Han
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, China
| | - Jing Hong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Leisha Cui
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wei Jin
- Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, China
| | - Lingyan Yang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong, China
| |
Collapse
|
3
|
Selyutina OY, Kononova PA, Koshman VE, Shelepova EA, Azad MG, Afroz R, Dharmasivam M, Bernhardt PV, Polyakov NE, Richardson DR. Ascorbate-and iron-driven redox activity of Dp44mT and emodin facilitates peroxidation of micelles and bicelles. Biochim Biophys Acta Gen Subj 2021; 1866:130078. [PMID: 34974127 DOI: 10.1016/j.bbagen.2021.130078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS Herein, we compared the effect of Fe complexes of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia.
| | - P A Kononova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V E Koshman
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - M Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - P V Bernhardt
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia
| | - D R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
4
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
5
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
6
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
7
|
Manogaran P, Umapathy D, Karthikeyan M, Venkatachalam K, Singaravelu A. Dietary Phytochemicals as a Potential Source for Targeting Cancer Stem Cells. Cancer Invest 2021; 39:349-368. [PMID: 33688788 DOI: 10.1080/07357907.2021.1894569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is composed of various types of cells that lead to tumor heterogeneity. In the middle of these populations, cancer stem cells play a vital role in the initiation and progression of cancer cells and are capable of self-renewal and differentiation processes. These cancer stem cells are resistant to conventional therapy such as chemotherapy and radiotherapy. To eradicate the cancer stem cells in the tumor environment, various natural product has been found in recent years. In this review, we have selected some of the natural products based on anticancer potential including targeting cancer cells and cancer stem cells. Further, this review explains the molecular mechanism of action of these natural products in various cancer stem cells. Therefore, targeting a multi-drug resistant cancer stem cell by natural products is a novel method to reduce drug resistance and adverse effect during conventional therapy.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Devan Umapathy
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anbu Singaravelu
- Department of PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur, Tamilnadu, India
| |
Collapse
|
8
|
Metabolomics Approach for Discrimination and Quality Control of Natural and Commercial Fallopia multiflora Products in Vietnam. Int J Anal Chem 2020; 2020:8873614. [PMID: 33204273 PMCID: PMC7665924 DOI: 10.1155/2020/8873614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 12/03/2022] Open
Abstract
A precise HPLC-DAD-based quantification together with the metabolomics statistical method was developed to distinguish and control the quality of Fallopia multiflora, a popular medicinal material in Vietnam. Multivariate statistical methods such as hierarchical clustering analysis and principal component analysis were utilized to compare and discriminate six natural and twelve commercial samples. 2,3,4′,5-Tetrahydroxystilbene 2-O-β-D-glucopyranoside (THSG) (1), emodin (4), and the new compound 6-hydroxymusizin 8-O-α-D-apiofuranosyl-(1⟶6)-β-D-glucopyranoside (5) could be considered as important markers for classification of F. multiflora. Furthermore, seven phenolics were quantified that the variation in the contents of selected metabolites revealed the differences in the quality of natural and commercial samples. Recovery of the compounds from the analytes was more than 98%, while the limits of detection (LOD) and the limits of quantitation (LOQ) ranged from 0.5 to 6.6 μg/ml and 1.5 to 19.8 μg/ml, respectively. The linearity, LOD, LOQ, precision, and accuracy satisfied the criteria FDA guidance on bioanalytical methods. Overall, this method is a promising tool for discrimination and quality assurance of F. multiflora products.
Collapse
|
9
|
Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L, Qin G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics 2019; 20:195. [PMID: 31074374 PMCID: PMC6509864 DOI: 10.1186/s12859-019-2734-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Lipid metabolism reprogramming is a hallmark for tumor which contributes to tumorigenesis and progression, but the commonality and difference of lipid metabolism among pan-cancer is not fully investigated. Increasing evidences suggest that the alterations in tumor metabolism, including metabolite abundance and accumulation of metabolic products, lead to local immunosuppression in the tumor microenvironment. An integrated analysis of lipid metabolism in cancers from different tissues using multiple omics data may provide novel insight into the understanding of tumorigenesis and progression. Results Through systematic analysis of the multiple omics data from TCGA, we found that the most-widely altered lipid metabolism pathways in pan-cancer are fatty acid metabolism, arachidonic acid metabolism, cholesterol metabolism and PPAR signaling. Gene expression profiles of fatty acid metabolism show commonalities across pan-cancer, while the alteration in cholesterol metabolism and arachidonic acid metabolism differ with tissue origin, suggesting tissue specific lipid metabolism features in different tumor types. An integrated analysis of gene expression, DNA methylation and mutations revealed factors that regulate gene expression, including the differentially methylated sites and mutations of the lipid genes, as well as mutation and differential expression of the up-stream transcription factors for the lipid metabolism pathways. Correlation analysis of the proportion of immune cells in the tumor microenvironment and the expression of lipid metabolism genes revealed immune-related differentially expressed lipid metabolic genes, indicating the potential crosstalk between lipid metabolism and immune response. Genes related to lipid metabolism and immune response that are associated with poor prognosis were discovered including HMGCS2, GPX2 and CD36, which may provide clues for tumor biomarkers or therapeutic targets. Conclusions Our study provides an integrated analysis of lipid metabolism in pan-cancer, highlights the perturbation of key metabolism processes in tumorigenesis and clarificates the regulation mechanism of abnormal lipid metabolism and effects of lipid metabolism on tumor immune microenvironment. This study also provides new clues for biomarkers or therapeutic targets of lipid metabolism in tumors. Electronic supplementary material The online version of this article (10.1186/s12859-019-2734-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Hao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Daixi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yong Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Yongkun Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Yuqi Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Baoguo Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China.
| | - Guangrong Qin
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China. .,Institute for Systems Biology, Seattle, WA, 98109, USA.
| |
Collapse
|
10
|
Shi GH, Zhou L. Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6‑mediated pathways in vivo and in vitro. Mol Med Rep 2018; 18:5191-5197. [PMID: 30272291 DOI: 10.3892/mmr.2018.9510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Emodin has been recognized to be an anti‑cancer agent against a number of types of human cancer. It was demonstrated that TNF receptor‑associated factor 6 (TRAF6) was correlated with cancer angiogenesis and metastasis. The present study confirmed the association between TRAF6 and the angiogenesis/metastasis of anaplastic thyroid cancer (ATC). The anti‑angiogenesis and metastatic effects of emodin, in addition to its molecular mechanisms in ATC, were investigated. A total of two ATC cell lines, namely 8505c and SW1736, were studied. ATC cells were implanted into nude mice to form xenografts or to establish lung metastasis models. Emodin was used to incubate ATC cells or to treat animals orally. An MTT assay was used to assess cell proliferation. A wound healing assay was employed to evaluate cell migration. ELISA analysis was used to detect the vascular endothelial growth factor (VEGF) content. Western blotting was used to determine the protein expression levels. In the in vivo study, cancer angiogenesis was assessed by micro vascular density measurement. The lung metastatic rate was the criterion for cancer metastasis. The results of the present study demonstrated that the proliferation of ATC was inhibited by emodin. The activation of the TRAF6/hypoxia inducible factor (HIF)‑1α/VEGF and TRAF6/basigin (CD147)/matrix metalloproteinase‑9 (MMP9) pathways were associated with the angiogenesis and metastasis of ATC. In a concentration‑dependent manner, emodin inhibited the TRAF6/HIF‑1α/VEGF and TRAF6/CD147/MMP9 signaling pathways to suppress angiogenesis and metastasis. In conclusion, emodin exerted anti‑angiogenic and anti‑metastatic activities in ATC by affecting TRAF6‑mediated pathways.
Collapse
Affiliation(s)
- Guo-Hua Shi
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lin Zhou
- Department of Minimally Invasive Surgery, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
11
|
Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int J Mol Sci 2018; 19:E2843. [PMID: 30235891 PMCID: PMC6163315 DOI: 10.3390/ijms19092843] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Aloe genus plants, distributed in Old World, are widely known and have been used for centuries as topical and oral therapeutic agents due to their health, beauty, medicinal, and skin care properties. Among the well-investigated Aloe species are A. arborescens, A. barbadensis, A. ferox, and A. vera. Today, they account among the most economically important medicinal plants and are commonly used in primary health treatment, where they play a pivotal role in the treatment of various types of diseases via the modulation of biochemical and molecular pathways, besides being a rich source of valuable phytochemicals. In the present review, we summarized the recent advances in botany, phytochemical composition, ethnobotanical uses, food preservation, and the preclinical and clinical efficacy of Aloe plants. These data will be helpful to provide future directions for the industrial and medicinal use of Aloe plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Sevil Albayrak
- Department of Biology, Science Faculty, Erciyes University, Kayseri 38039, Turkey.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Yadav Uprety
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, P.O. Box 1030 Kirtipur, Kathmandu, Nepal.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box 812 Yaounde, Cameroon.
| | - Zubaida Yousef
- Department of Botany, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Integrative Pharmacogenomics Institute (iPROMISE), Level 7, FF3 Building, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, via Beldiletto 1/3, 20100 Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
12
|
Iyer VV, Priya PY, Kangeyavelu J. Effects of increased accumulation of doxorubicin due to emodin on efflux transporter and LRP1 expression in lung adenocarcinoma and colorectal carcinoma cells. Mol Cell Biochem 2018; 449:91-104. [PMID: 29644529 DOI: 10.1007/s11010-018-3346-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
Abstract
Treatment with doxorubicin (dox) and emodin, separately and together, under normoxic and hypoxia-like conditions induced by CoCl2, led to greater intracellular compound accumulation over 10 h post-addition in the presence of CoCl2 in lung adenocarcinoma (A549) and colorectal carcinoma (HCT-15) cell lines. Confocal microscopy revealed that emodin, by itself, showed high cytosolic distribution in both cell lines, at 40 min post-addition but had entered the nuclei by 2 h, while dox entered the nuclei by 40 min. Both compounds modulated the expression of the efflux transporters (PgP, ABCG2, or MRP1-4) and the endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP1), to different extents under the study conditions. Efflux transporter upregulation was linked to lower intracellular compound levels due to greater efflux. Increased dox accumulation was accompanied by unaltered expression or upregulation of LRP1 in A549 cells. In both cell lines, increased accumulation of dox and emodin was observed whenever LRP1 and the efflux transporters known to transport dox and emodin were all up- or downregulated concomitantly. Increased growth inhibition was linked to co-treatment with dox and emodin and with increased ligand accumulation. The results presented in this study raise the hypothesis that higher production of LRP1 protein may be associated with higher endocytosis of upregulated transporter proteins at the cell surface, and hence, increased dox and emodin accumulation and growth inhibition. If so, elevation of LRP1 expression may be a useful target for interventions to promote the efficacy of these and other anticancer drugs.
Collapse
Affiliation(s)
- Vidhya V Iyer
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, Maharashtra, 400076, India.
| | - P Yoga Priya
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
- , Madurai, India
| | - Jeipreeti Kangeyavelu
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
- , Chennai, India
| |
Collapse
|
13
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Inhibition of integrin-linked kinase expression by emodin through crosstalk of AMPKα and ERK1/2 signaling and reciprocal interplay of Sp1 and c-Jun. Cell Signal 2015; 27:1469-77. [PMID: 25889897 DOI: 10.1016/j.cellsig.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 12/19/2022]
Abstract
Despite the anti-cancer effect of emodin observed in several cancers, the underlying molecular mechanism remains to be elucidated. In this study, we showed that emodin-inhibited NSCLC cell growth and increased phosphorylation of AMPKα and ERK1/2. In addition, emodin-inhibited ILK protein expression. The overexpression of ILK reversed the effect of emodin on cell growth inhibition. Furthermore, the blockade of AMPK by compound C abrogated, while metformin, an activator of AMPK, strengthened the effect of emodin on the inhibition of ILK expression. Interestingly, the inhibitor of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK1/2 (PD98059) attenuated emodin-induced phosphorylation of AMPKα. Moreover, emodin reduced the protein expression of Sp1 and AP-1 subunit c-Jun. Exogenous expression of Sp1 and c-Jun diminished emodin-reduced ILK protein expression. Emodin suppressed ILK promoter activity, which was not observed in cells overexpression of Sp1 and treated with compound C. Intriguingly, exogenous expression of c-Jun overcame the emodin-inhibited Sp1 protein expression. Collectively, our results demonstrate that emodin inhibits ILK expression through AMPKα-mediated reduction of Sp1 and c-Jun. Metformin enhances the effects of emodin. Exogenous expression of Sp1 and c-Jun resists emodin-inhibited ILK promoter activity and protein expression. In addition, the overexpression of c-Jun diminishes emodin-induced AMPKα signaling. Thus, the crosstalk of AMPKα and MEK/ERK1/2 signaling and the reciprocal interaction between Sp1 and c-Jun proteins contribute to the overall responses of emodin. This novel signaling axis may be a therapeutic potential for prevention and treatment of NSCLC.
Collapse
|
15
|
Lin L, Ni B, Lin H, Zhang M, Li X, Yin X, Qu C, Ni J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: a review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:158-83. [PMID: 25449462 PMCID: PMC7127521 DOI: 10.1016/j.jep.2014.11.009] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb., which is known as Heshouwu ( in Chinese) in China. It is traditionally valued and reported for hair-blacking, liver and kidney-tonifying and anti-aging effects as well as low toxicity. The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research and toxicology of Polygonum multiflorum, based on the scientific literature. Moreover, trends and perspectives for future investigation of this plant are discussed. It will build up a new foundation for further study on Polygonum multiflorum. MATERIALS AND METHODS A systematic review of the literature on Polygonum multiflorum was performed using several resources, including classic books on Chinese herbal medicine and various scientific databases, such as PubMed, SciFinder, the Web of Science, Science Direct, China Knowledge Resource Integrated (CNKI). RESULTS Polygonum multiflorum is widely distributed throughout the world and has been used as a traditional medicine for centuries in China. The ethnomedical uses of Polygonum multiflorum have been recorded in many provinces of China and Japan for nine species of adulterants in six families. More than 100 chemical compounds have been isolated from this plant, and the major components have been determined to be stilbenes, quinones, flavonoids and others. Crude extracts and pure compounds of this plant are used as effective agents in pre-clinical and clinical practice due to their anti-aging, anti-hyperlipidaemia, anti-cancer and anti-inflammatory effects and to promote immunomodulation, neuroprotection, and the curing of other diseases. However, these extracts can also lead to hepatotoxicity, nephrotoxicity and embryonic toxicity. Pharmacokinetic studies have demonstrated that the main components of Polygonum multiflorum, such as 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside and emodin are distributed among many organs and tissues. CONCLUSION Therapeutic potential of Polygonum multiflorum has been demonstrated in the conditions like Alzheimer׳s disease, Parkinson׳s disease, hyperlipidaemia, inflammation and cancer, which is attributed to the presence of various stilbenes, quinones, flavonoids, phospholipids and other compounds in the drug. On the other hand, the adverse effects (hepatotoxicity, nephrotoxicity, and embryonic toxicity) of this plant were caused by the quinones, such as emodin and rhein. Thus more pharmacological and toxicological mechanisms on main active compounds are necessary to be explored, especially the combined anthraquinones (Emodin-8-O-β-d-glucopyranoside, Physcion-8-O-β-d-glucopyranoside, etc.) and the variety of stilbenes.
Collapse
Affiliation(s)
- Longfei Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Boran Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongmei Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Miao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xuechun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
16
|
Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J Tradit Complement Med 2014; 5:21-6. [PMID: 26151005 PMCID: PMC4488101 DOI: 10.1016/j.jtcme.2014.10.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023] Open
Abstract
Aloe vera (蘆薈 lú huì) is well known for its considerable medicinal properties. This plant is one of the richest natural sources of health for human beings coming. The chemistry of the plant has revealed the presence of more than 200 different biologically active substances. Many biological properties associated with Aloe species are contributed by inner gel of the leaves. Most research has been centralized on the biological activities of the various species of Aloe, which include antibacterial and antimicrobial activities of the nonvolatile constituents of the leaf gel. Aloe species are widely distributed in the African and the eastern European continents, and are spread almost throughout the world. The genus Aloe has more than 400 species but few, such as A. vera, Aloe ferox, and Aloe arborescens, are globally used for trade. A. vera has various medicinal properties such as antitumor, antiarthritic, antirheumatoid, anticancer, and antidiabetic properties. In addition, A. vera has also been promoted for constipation, gastrointestinal disorders, and for immune system deficiencies. However, not much convincing information is available on properties of the gel. The present review focuses on the detailed composition of Aloe gel, its various phytocomponents having various biological properties that help to improve health and prevent disease conditions.
Collapse
Affiliation(s)
- Maharjan H Radha
- Biochemistry Department, Faculty of Science, The M S University of Baroda, Vadodara, Gujarat, India
| | - Nampoothiri P Laxmipriya
- Biochemistry Department, Faculty of Science, The M S University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
17
|
Mulakayala C, Banaganapalli B, Mulakayala N, Pulaganti M, C M A, Chitta SK. Design and evaluation of new chemotherapeutics of aloe-emodin (AE) against the deadly cancer disease: an in silico study. J Chem Biol 2013; 6:141-53. [PMID: 24432130 DOI: 10.1007/s12154-013-0097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022] Open
Abstract
The Bcl-2 family proteins include pro- and antiapoptotic factors acting as critical arbiters of apoptotic cell death decisions in most circumstances. Evasion of apoptosis is one of the hallmarks of cancer, relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins was observed in many cancers. Since Bax-mediated induction of apoptosis is a crucial mechanism in cancerous cells, we aimed at conducting in silico analysis on Bax in order to predict the possible interactions for anticancer agents. The present report depicts the binding mode of aloe-emodin and its structurally modified derivatives onto Bax. The structural information about the binding site of Bax for docked compounds obtained from this study could aid in screening and designing new anticancer agents or selective inhibitors for chemotherapy against Bax.
Collapse
Affiliation(s)
- Chaitanya Mulakayala
- DBT-Bioinforamtics Infrastructure Facility (BIF), Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003 AP India
| | - Babajan Banaganapalli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Naveen Mulakayala
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad, campus Gachibowli, Hyderabad, India
| | - Madhusudana Pulaganti
- DBT-Bioinforamtics Infrastructure Facility (BIF), Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003 AP India
| | - Anuradha C M
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapur, AP India 515001
| | - Suresh Kumar Chitta
- DBT-Bioinforamtics Infrastructure Facility (BIF), Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, 515003 AP India
| |
Collapse
|