1
|
Zhu Y, Xu Q, Zou R, Liu S, Tao R, Liu S, Li X, Wen L, Wu J, Wang J. Phenethyl isothiocyanate induces cytotoxicity and apoptosis of porcine kidney cells through Mitochondrial ROS-associated ERS pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109804. [PMID: 38013045 DOI: 10.1016/j.cbpc.2023.109804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Glucosinolates (GLS) in cruciferous vegetables are anti-nutritional factors. Excessive or long-term intake of GLS-containing feed is harmful to animal health and may cause kidney damage. Phenethyl isothiocyanate (PEITC) is a GLS. In this study, we investigated the inhibitory effect of PEITC on a porcine kidney (PK-15) cell line and explored the mechanism of PEITC-induced apoptosis. We found that PEITC could affect cell viability and induce cell apoptosis after incubating cells for 24 h. High concentrations of PEITC can induce intracellular ROS accumulation, resulting in impaired mitochondrial function (decreased MMP, decreased ATP) and DNA damage (increased 8-OHdG), cytochrome c in mitochondria is released into the cytoplasm and activates mitochondrial pathway apoptosis-related proteins (Bcl-2 family and caspase-9, -3). Meanwhile, PEITC could induce intracellular Ca2+ accumulation, disrupt ER homeostasis, and activate the expression levels of three ER-resident transmembrane proteins orchestrating the UPR (PERK, IRE-1α and ATF6) and ER-related proteins (GRP78 and CHOP), thereby activating ERS-pathway apoptosis-related proteins (caspase-12, -7). Our results showed that low concentration (2.5 μM) of PEITC had no damaging effect on cells. In comparison, a high concentration (10 μM) of PEITC could induce cell damage in porcine kidney cells and induce apoptosis in PK-15 cells via the Mitochondrial ROS-associated ERS pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, China
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ruili Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sha Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shuiping Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Guan L, Yang Y, Lu Y, Chen Y, Luo X, Xin D, Meng X, Shan Z, Jiang G, Wang F. Reactivation of mutant p53 in esophageal squamous cell carcinoma by isothiocyanate inhibits tumor growth. Front Pharmacol 2023; 14:1141420. [PMID: 37168998 PMCID: PMC10164965 DOI: 10.3389/fphar.2023.1141420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
p53 mutations are prevalent in human cancers; approximately half of patients with esophageal cancer present these mutations. Mutant p53 (mutp53) exerts oncogenic functions that promote malignant tumor progression, invasion, metastasis, and drug resistance, resulting in poor prognosis. Some small molecules have been shown to mitigate the oncogenic function of mutp53 by restoring its wild-type activity. Although these molecules have been evaluated in clinical trials, none have been successfully used in the clinic. Here, we investigated the antitumor effects of phenethyl isothiocyanate (PEITC) in p53-mutant esophageal squamous cell carcinoma (ESCC) and elucidated its mechanism to identify new therapeutic strategies. We observed that p53R248Q is a DNA contact mutation and a structural mutation and that PEITC can restore the activity of p53R248Q in vitro and in vivo, further clarifying the antitumor activity of PEITC in cancers with different types of p53 mutations. PEITC can inhibit ESCC growth, induce apoptosis, and arrest cell cycle progression and has a preferential selectivity for ESCC with p53 mutations. Mechanistic studies showed that PEITC induced apoptosis and arrested cells at G2/M transition in cells expressing the p53R248Q mutant by restoring the wild-type conformation and transactivation function of p53; these effects were concentration dependent. Furthermore, PEITC inhibited the growth of subcutaneous xenografts in vivo and restored p53 mutant activity in xenografts. According to these findings, PEITC has antitumor effects, with its ability to restore p53R248Q activity being a key molecular event responsible for these effects.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yalan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Luo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Xin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangrui Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengzheng Shan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Wang,
| |
Collapse
|
3
|
Comparison of the inhibitory potential of benzyl isothiocyanate and phenethyl isothiocyanate on Shiga toxin-producing and enterotoxigenic Escherichia coli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Hirata T, Cho YM, Suzuki I, Toyoda T, Akagi JI, Nakamura Y, Numazawa S, Ogawa K. 4-Methylthio-3-butenyl isothiocyanate (MTBITC) induced apoptotic cell death and G2/M cell cycle arrest via ROS production in human esophageal epithelial cancer cells. J Toxicol Sci 2019; 44:73-81. [DOI: 10.2131/jts.44.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tadashi Hirata
- Division of Pathology, National Institute of Health Sciences
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences
| | - Isamu Suzuki
- Division of Pathology, National Institute of Health Sciences
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences
| | - Jun-ichi Akagi
- Division of Pathology, National Institute of Health Sciences
| | - Yasushi Nakamura
- Kyoto Institute of Japanese Diet Culture, Kyoto Prefectural University
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
5
|
Akagi JI, Cho YM, Mizuta Y, Toyoda T, Ogawa K. Subchronic toxicity evaluation of 5-hexenyl isothiocyanate, a nature identical flavoring substance from Wasabia japonica, in F344/DuCrj rats. Food Chem Toxicol 2018; 122:80-86. [DOI: 10.1016/j.fct.2018.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022]
|
6
|
N��ez-Iglesias M, Novio S, Garc�a-Santiago C, Cartea M, Soengas P, Velasco P, Freire-Garabal M. Effects of 3-butenyl isothiocyanate on phenotypically different prostate cancer cells. Int J Oncol 2018; 53:2213-2223. [DOI: 10.3892/ijo.2018.4545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/27/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- M.j. N��ez-Iglesias
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - S. Novio
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - C. Garc�a-Santiago
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - M.e. Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - M. Freire-Garabal
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| |
Collapse
|
7
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
8
|
Cho YM, Hasumura M, Imai T, Takami S, Nishikawa A, Ogawa K. Horseradish extract promotes urinary bladder carcinogenesis when administered to F344 rats in drinking water. J Appl Toxicol 2017; 37:853-862. [PMID: 28165151 DOI: 10.1002/jat.3434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Horseradish extract (HRE), consisting mainly of a mixture of allyl isothiocyanate and other isothiocyanates, has been used as a food additive. To evaluate the potential hazards of HRE, a 104-week chronic study, a 2-week analysis of cell proliferation in the urinary bladder and a medium-term promotion bioassay of HRE were conducted with administration at concentrations of up to 0.04% HRE in the drinking water to male F344 rats. In the 104-week chronic study with 32 male rats per group, no treatment-related increases in the incidences of neoplastic lesions in any organ, including urinary bladder, were observed, except for simple hyperplasia in the urinary bladder in rats treated with HRE at concentrations of more than 0.01% (5.0 mg kg-1 body weight day-1 ). In the promotion study, HRE treatment after N-butyl-N-(4-hydroxybutyl)nitrosamine initiation caused a clear increase in papillary or nodular hyperplasia, papilloma, and urothelial carcinoma of the urinary bladder in the groups given HRE for 13 weeks at doses higher than 0.005%, 0.01%, and 0.04% (2.7, 5.4 and 20.5 mg kg-1 body weight day-1 ), respectively. In the 2-week cell proliferation analysis, treatment with HRE at concentrations greater than 0.005% (3.9 mg kg-1 body weight day-1 ) caused transient increases in 5-bromo-2'-deoxyuridine labeling indices in the urothelium. Although clear tumor induction was not observed, administration of relatively low-dose HRE increased cell proliferation in the urothelium and exerted obvious promoting effects on rat urinary bladder carcinogenesis. Further studies are needed to elucidate the mode of action of HRE in the rat urinary bladder to facilitate data extrapolation from the present study and provide insights into risk assessment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Mai Hasumura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Toshio Imai
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan.,Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeaki Takami
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|