1
|
Lagadic L, Coady KK, Körner O, Miller TJ, Mingo V, Salinas ER, Sauer UG, Schopfer CR, Weltje L, Wheeler JR. Endocrine disruption assessment in aquatic vertebrates - Identification of substance-induced thyroid-mediated effect patterns. ENVIRONMENT INTERNATIONAL 2024; 191:108918. [PMID: 39270431 DOI: 10.1016/j.envint.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024]
Abstract
According to the World Health Organisation and European Commission definitions, substances shall be considered as having endocrine disrupting properties if they show adverse effects, have endocrine activity and the adverse effects are a consequence of the endocrine activity (using a weight-of-evidence approach based on biological plausibility), unless the adverse effects are not relevant to humans or non-target organisms at the (sub)population level. To date, there is no decision logic on how to establish endocrine disruption via the thyroid modality in non-mammalian vertebrates. This paper describes an evidence-based decision logic compliant with the integrated approach to testing and assessment (IATA) concept, to identify thyroid-mediated effect patterns in aquatic vertebrates using amphibians as relevant models for thyroid disruption assessment. The decision logic includes existing test guidelines and methods and proposes detailed considerations on how to select relevant assays and interpret the findings. If the mammalian dataset used as the starting point indicates no thyroid concern, the Xenopus Eleutheroembryonic Thyroid Assay allows checking out thyroid-mediated activity in non-mammalian vertebrates, whereas the Amphibian Metamorphosis Assay or its extended, fixed termination stage variant inform on both thyroid-mediated activity and potentially population-relevant adversity. In evaluating findings, the response patterns of all assay endpoints are considered, including the direction of changes. Thyroid-mediated effect patterns identified at the individual level in the amphibian tests are followed by mode-of-action and population relevance assessments. Finally, all data are considered in an overarching weight-of-evidence evaluation. The logic has been designed generically and can be adapted, e.g. to accommodate fish tests once available for thyroid disruption assessments. It also ensures that all scientifically relevant information is considered, and that animal testing is minimised. The proposed decision logic can be included in regulatory assessments to facilitate the conclusion on whether substances meet the endocrine disruptor definition for the thyroid modality in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany.
| | | | - Oliver Körner
- ADAMA Deutschland GmbH, Environmental Safety, Köln, Germany
| | - Tara J Miller
- Syngenta, Jealott's Hill International Research Centre, Jealott's Hill, United Kingdom
| | | | - Edward R Salinas
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany; Georg-August-University Göttingen, Division of Plant Pathology and Plant Protection, Göttingen, Germany
| | | |
Collapse
|
2
|
Fort DJ, Peake BF, Mathis MB, Leopold MA, Wolf JC, Weterings PJJM. Comparing the effects and potencies of perchlorate and nitrate on amphibian metamorphosis using a modified amphibian metamorphosis assay (AMA). J Appl Toxicol 2024; 44:1184-1197. [PMID: 38639310 DOI: 10.1002/jat.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
A modified amphibian metamorphosis assay was performed in which Nieuwkoop and Faber (NF) stage 47 Xenopus laevis larvae were exposed to different concentrations of either perchlorate (ClO4 -) or nitrate (NO3 -) for 32 days. Larvae were exposed to 0.0 (control), 5, 25, 125, 625, and 3125 μg/L ClO4 -, or 0 (control), 23, 71, 217, 660, and 2000 mg/L NO3 -. The primary endpoints were survival, hind limb length (HLL), forelimb emergence and development, developmental stage (including time to NF stage 62 [MT62]), thyroid histopathology, wet weight, and snout-vent length (SVL). Developmental delay as evidenced by altered stage distribution and increased MT62, a higher degree of thyroid follicular cell hypertrophy, and an increase in the prevalence of follicular cell hyperplasia was observed at concentrations ≥125 μg/L ClO4 -. The no observed effect concentration (NOEC) for developmental endpoints was 25.0 μg/L ClO4 - and the NOEC for growth endpoints was 3125 μg/L ClO4 -. Exposure to nitrate did not adversely affect MT62, but a decreasing trend in stage distribution and median developmental stage at ≥217 mg/L NO3 - was observed. No histopathologic effects associated with nitrate exposure were observed. An increasing trend in SVL-normalized HLL was observed at 2000 mg/L NO3 -. Nitrate did not alter larval growth. The NOEC for developmental endpoints was 71 mg/L NO3 -, and 2000 mg/L NO3 - for growth endpoints. The present study provided additional evidence that the effects and potency of nitrate and perchlorate on metamorphosis and growth in X. laevis are considerably different.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Inc., Stillwater, Oklahoma, USA
| | | | - Michael B Mathis
- Fort Environmental Laboratories, Inc., Stillwater, Oklahoma, USA
| | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | |
Collapse
|
3
|
Dang Z. Amphibian toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120006. [PMID: 35998776 DOI: 10.1016/j.envpol.2022.120006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Both amphibian metamorphosis assay (AMA) and larval amphibian growth and development assay (LAGDA) can detect thyroid-mediated modality and adversity on the basis of morphological changes during the thyroid hormone-dependent metamorphosis. They are used for identification of thyroid hormone system disrupting chemicals (TDCs) for non-target organisms or the environment. The EU Guidance recommends that the AMA and the LAGDA should be used to address sufficient investigation of the thyroid-mediated modality and adversity, respectively. In the EU discussions over identification of TDCs, the necessity of using LAGDA as a follow-up of positive results of the AMA has been questioned because of the overlap between the endpoints and the exposure of both tests. This study analyzed similarities, differences, and sensitivity of these two assays in detection of TDCs. For agonists and most of antagonists of the hypothalamic-pituitary-thyroid (HPT) axis, both AMA and LAGDA can detect the thyroid-mediated modality and adversity. The LAGDA, as a follow-up of the positive results of the AMA, may not be needed because the results of AMA are considered enough for identification of TDCs. For chemicals like inhibitors of iodotyrosine deiodinase, the LAGDA is considered necessary for identification of TDCs because the thyroid-mediated adversity cannot be detected until Nieuwkoop and Faber (NF) stage 62. Incorporation of mechanistic endpoints into existing test guidelines and the use of Xenopus Eleutheroembryo Thyroid Assay (XETA), extended amphibian metamorphosis assay (EAMA) and adverse outcome pathways (AOPs) for testing and identification of TDCs are further discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
4
|
Amphibian Metamorphosis Assay: Investigation of the potential effects of five chemicals on the hypothalamic-pituitary thyroid axis of Xenopus laevis. Regul Toxicol Pharmacol 2022; 134:105241. [PMID: 35940297 PMCID: PMC10389063 DOI: 10.1016/j.yrtph.2022.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
2-Ethylhexyl 4-hydroxybenzoate (2-EHHB), 4-tert-octylphenol (4-OP), 4-nonylphenol-branched (4-NP), benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) were evaluated using a 21-day Amphibian Metamorphosis Assay (AMA). Xenopus laevis larvae were exposed nominally to each chemical at 3.6, 10.9, 33.0, and 100 μg/L, except 4-NP concentrations were 1.8, 5.5, 16.5 and 50 μg/L. Endpoints included mortality, developmental stage, hind limb length (HLL), snout-vent length (SVL), body weight (BW), and thyroid histopathology. BBP and 4-OP accelerated development compared to controls at the mean measured concentration of 3.5 and 39.8 μg/L, respectively. An increase in developmental stage frequency distribution was observed for 4-OP at 39.8 and 103 µg/L, BBP at all concentrations and DBP at 143 µg/L. Normalized HLL was increased on study day (SD) 21 for all tested substances except 4-NP. Histopathology revealed accelerated development and mild thyroid follicular cell hypertrophy at all BBP concentrations, but moderate severity at 105 μg/L. Increased BW occurred for all chemicals except 4-OP. Increased SVL was observed for 4-NP, BBP and DBP on SD 21. There was insufficient evidence that 4-NP and 2-EHHB affected the hypothalamic-pituitary thyroid axis, however, BBP, DBP and 4-OP showed potential effects on amphibian metamorphosis and thyroid activity, albeit through different lines of evidence.
Collapse
|
5
|
Wolf JC, Bejarano AC, Fort DJ, Wheeler JR. An examination of historical control histopathology metadata from 51 Amphibian Metamorphosis Assays. Crit Rev Toxicol 2022; 51:729-739. [DOI: 10.1080/10408444.2021.1997910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jeffrey C. Wolf
- Experimental Pathology Laboratories, Inc., Sterling, VA, USA
| | | | | | | |
Collapse
|
6
|
Ortego LS, Olmstead AW, Weltje L, Wheeler JR, Bone AJ, Coady KK, Banman CS, Burden N, Lagadic L. The Extended Amphibian Metamorphosis Assay: A Thyroid-Specific and Less Animal-Intensive Alternative to the Larval Amphibian Growth and Development Assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2135-2144. [PMID: 33939850 PMCID: PMC8362105 DOI: 10.1002/etc.5078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa S. Ortego
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentCaryNorth CarolinaUSA
| | - Allen W. Olmstead
- BASF Corporation, Agricultural Solutions–EcotoxicologyResearch Triangle ParkNorth CarolinaUSA
| | - Lennart Weltje
- BASF SEAgricultural Solutions–EcotoxicologyLimburgerhofGermany
| | | | - Audrey J. Bone
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | - Katherine K. Coady
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | | | - Natalie Burden
- National Centre for the Replacement, Refinement, & Reduction of Animals in ResearchLondonUnited Kingdom
| | - Laurent Lagadic
- Bayer AG, Research and Development, Crop Science, Environmental SafetyMonheim am RheinGermany
| |
Collapse
|