1
|
Qin Y, Lin W, Ren Y. Ferroptosis involvement in the neurotoxicity of flunitrazepam in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107128. [PMID: 39467492 DOI: 10.1016/j.aquatox.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
In recent years, psychoactive drugs such as benzodiazepines (BZDs) have been frequently detected in water environments, however, there is still limited understanding regarding their potential impact on neurological health and underlying mechanisms. This study evaluated the neurotoxicity of the typical BZD drug flunitrazepam (FLZ, 0.2 and 5 μg/L) in zebrafish embryos and adults, and investigated the relationship between ferroptosis and FLZ-induced neurotoxicity. The results indicated that acute exposure to FLZ significantly inhibited zebrafish embryo hatching and promotes death, induced larval deformities, and led to abnormal neurobehavioral responses in larvae, likely due to ferroptosis induction. Results from a 30-day subacute exposure to FLZ showed that it decreased motor function and induced cognitive impairment in adult zebrafish. Immunofluorescence of brain tissues revealed a reduction in neurons in the telencephalon and an increase in microglia in the mesencephalon of the zebrafish exposed to FLZ. The ultrastructure of brain mitochondria showed serious damage. Besides, FLZ exposure increased iron levels, reduced GSH/GSSG and increased LPO in brain tissue, which is related to the abnormal expression of genes associated with ferroptosis. In the rescue experiments with co-exposure to deferoxamine (DFO), the motor-related parameters and biochemical indexes related to ferroptosis were restored, suggesting that FLZ can induce ferroptosis. The molecular docking results indicated that FLZ had a higher affinity with transferrin. This study elucidates the close relationship between ferroptosis and FLZ-induced neurotoxicity, which is significant for understanding the physiological damage caused by psychoactive substances and assessing environmental risks.
Collapse
Affiliation(s)
- Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Chen J, Lei Y, Wen J, Zheng Y, Gan X, Liang Q, Huang C, Song Y. The neurodevelopmental toxicity induced by combined exposure of nanoplastics and penicillin in embryonic zebrafish: The role of aging processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122281. [PMID: 37516295 DOI: 10.1016/j.envpol.2023.122281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
As ubiquitous contaminants, nanoplastics and antibiotics are frequently co-presence and widely detected in the freshwater environment and biota, posing a high co-exposure risk to aquatic organisms and even humans. More importantly, how the aging process of nanoplastics affects the joint toxic potential of nanoplastics and antibiotics has not been explored. Here, we generated two aged polystyrene nanoplastics (PS) by UV radiation (UV-PS) and ozonation (O3-PS). Non-teratogenic concentrations of pristine PS (80 nm) and antibiotics penicillin (PNC) co-exposure synergistically suppressed the embryo heart beating and behaviors of spontaneous movement, touch response, and larval swimming behavioral response. Pristine PS and aged UV-PS, but not aged O3-PS, showed similar effects on zebrafish embryo/larval neurodevelopment. However, when co-exposure with PNC, both aged PS, but not pristine PS, showed antagonistic effects. In late-stage juvenile social behavior testing, we found that PS decreased the exploration in light/dark preference assay. The synergistic effect of aged PS with PNC was further explored, including cellular apoptosis, ROS formation, and neurotransmitter metabolite regulation. Mechanistically, aged UV-PS but not O3-PS significantly increased the adsorption rate of PNC compared to pristine PS, which may account for the toxicity difference between the two aged PS. In conclusion, our results confirmed that PS served as a carrier for PNC, and the environmental aging process changed their neurobehavioral toxicity pattern in vivo.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yuhang Lei
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Yi Zheng
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Xiufeng Gan
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qiuju Liang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
3
|
Tan JK, Nazar FH, Makpol S, Teoh SL. Zebrafish: A Pharmacological Model for Learning and Memory Research. Molecules 2022; 27:7374. [PMID: 36364200 PMCID: PMC9657833 DOI: 10.3390/molecules27217374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.
Collapse
Affiliation(s)
- Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Faris Hazwan Nazar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Hu Y, Hu J, Li W, Gao Y, Tian Y. Changes of embryonic development, locomotor activity, and metabolomics in zebrafish co-exposed to chlorpyrifos and deltamethrin. J Appl Toxicol 2020; 41:1345-1356. [PMID: 33247449 DOI: 10.1002/jat.4124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Organophosphates (OPs) and pyrethroids (PYRs) are extensively used pesticides and often occur in the form of mixture, whereas little was known about their joint toxicities. We aim to investigate the individual and joint effects of OPs and PYRs exposure on zebrafish embryo by employing chlorpyrifos (CPF) and deltamethrin (DM) as representatives. Zebrafish embryos at 2 hours post fertilization (hpf) were exposed to CPF (4.80, 39.06, and 78.13 μg/L), DM exposure (0.06, 1.60, and 3.19 μg/L), and CPF + DM (4.80 + 0.06, 39.06 + 1.60, and 78.13 + 3.19 μg/L) until 144 hpf. Embryonic development, locomotor activity, and metabolomic changes were recorded and examined. Results displayed that individual exposure to CPF and DM significantly increased the mortality and malformation rate of zebrafish embryos, but decreased hatching rate was only found in CPF + DM co-exposure groups (p < .05). Meanwhile, individual CPF exposure had no detrimental effect on locomotor activity, high dose of individual CPF exposure decreased the swimming speed but had adaptability to the conversion from dark to light, whereas high dose of CPF + DM co-exposure exhibited not only significant decline in swimming speed but also no adaptability to the repeated stimulations, suggesting deficit in learning and memory function. In metabolomic analysis, individual CPF exposure mainly influenced the metabolism of glycerophospholipids and amino acids, individual DM exposure mainly influenced glycerophospholipids, and CPF + DM co-exposure mainly influenced glycerophospholipids and amino acids. Taken together, our findings suggested the embryonic toxicities and neurobehavioral changes caused by CPF and/or DM exposure. The disorder metabolomics of glycerophospholipids and amino acids might be involved in the underlying mechanism of those toxicities.
Collapse
Affiliation(s)
- Yi Hu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|