1
|
Mahmoud SS, Morsy SA, Aly EM, Mohalhal IA. Bio-spectroscopic investigation linking changes of retinal structure with short-term administration of Amiodarone and revealing the ameliorative effect of vitamin E supplementation. Sci Rep 2024; 14:20746. [PMID: 39237619 PMCID: PMC11377559 DOI: 10.1038/s41598-024-70573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Long term use of Amiodarone (AMIO) is associated with the development of ocular adverse effects. This study investigates the short term effects, and the ameliorative consequence of vitamin E on retinal changes that were associated with administration of AMIO. This is accomplished by investigating both retinal structural and conformational characteristics using Fourier transform infrared spectroscopy (FTIR) and Fundus examination. Three groups of healthy rabbits of both sexes were used; the first group served as control. The second group was orally treated with AMIO (160 mg /kg body weight) in a daily basis for two weeks. The last group orally received AMIO as the second group for two weeks then, oral administration of vitamin E (100 mg/kg body weight) for another two weeks as well. FTIR results revealed significant structural and conformational changes in retinal tissue constituents that include lipids and proteins due to AMIO administration. AMIO treatment was associated with fluctuated changes (increased/decreased) in the band position and bandwidth of NH, OH, and CH bonds. This was concomitant with changes in the percentage of retinal protein constituents in particularly α-helix and Turns. AMIO facilitates the formation of intra-molecular hydrogen bonding and turned retinal lipids to be more disordered structure. In conclusion, the obtained FTIR data together with principal component analysis provide evidence that administration of vitamin E following the treatment with AMIO can ameliorate these retinal changes and, these biophysical changes are too early to be detected by Fundus examination.
Collapse
Affiliation(s)
- Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt.
| | - Sahar A Morsy
- Physics Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Eman M Aly
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Islam A Mohalhal
- Retina Department, Research Institute of Ophthalmology, Giza, Egypt
| |
Collapse
|
2
|
Liraglutide Exerts Protective Effects by Downregulation of PPARγ, ACSL1 and SREBP-1c in Huh7 Cell Culture Models of Non-Alcoholic Steatosis and Drug-Induced Steatosis. Curr Issues Mol Biol 2022; 44:3465-3480. [PMID: 36005135 PMCID: PMC9406665 DOI: 10.3390/cimb44080239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: With the aging of the population and polypharmacy encountered in the elderly, drug-induced steatosis (DIS) has become frequent cause of non-alcoholic steatosis (NAS). Indeed, NAS and DIS may co-exist, making the ability to distinguish between the entities ever more important. The aim of our study was to study cell culture models of NAS and DIS and determine the effects of liraglutide (LIRA) in those models. (2) Methods: Huh7 cells were treated with oleic acid (OA), or amiodarone (AMD) to establish models of NAS and DIS, respectively. Cells were treated with LIRA and cell viability was assessed by MTT, lipid accumulation by Oil-Red-O staining and triglyceride assay, and intracellular signals involved in hepatosteatosis were quantitated by RT-PCR. (3) Results: After exposure to various OA and AMD concentrations, those that achieved 80% of cells viabilities were used in further experiments to establish NAS and DIS models using 0.5 mM OA and 20 µM AMD, respectively. In both models, LIRA increased cell viability (p < 0.01). Lipid accumulation was increased in both models, with microsteatotic pattern in DIS, and macrosteatotic pattern in NAS which corresponds to greater triglyceride accumulation in latter. LIRA ameliorated these changes (p < 0.001), and downregulated expression of lipogenic ACSL1, PPARγ, and SREBP-1c pathways in the liver (p < 0.01) (4) Conclusions: LIRA ameliorates hepatocyte steatosis in Huh7 cell culture models of NAS and DIS.
Collapse
|
3
|
Kolaric TO, Nincevic V, Kuna L, Duspara K, Bojanic K, Vukadin S, Raguz-Lucic N, Wu GY, Smolic M. Drug-induced Fatty Liver Disease: Pathogenesis and Treatment. J Clin Transl Hepatol 2021; 9:731-737. [PMID: 34722188 PMCID: PMC8516847 DOI: 10.14218/jcth.2020.00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/08/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (commonly known as MAFLD) impacts global health in epidemic proportions, and the resulting morbidity, mortality and economic burden is enormous. While much attention has been given to metabolic syndrome and obesity as offending factors, a growing incidence of polypharmacy, especially in the elderly, has greatly increased the risk of drug-induced liver injury (DILI) in general, and drug-induced fatty liver disease (DIFLD) in particular. This review focuses on the contribution of DIFLD to DILI in terms of epidemiology, pathophysiology, the most common drugs associated with DIFLD, and treatment strategies.
Collapse
Affiliation(s)
- Tea Omanovic Kolaric
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Vjera Nincevic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Lucija Kuna
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | | | - Kristina Bojanic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
- Health Center Osijek, Osijek, Croatia
| | - Sonja Vukadin
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - Nikola Raguz-Lucic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
| | - George Y Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Martina Smolic
- University of Osijek, Faculty of Medicine, Osijek, Croatia
- University of Osijek, Faculty of Dental Medicine and Health, Osijek, Croatia
- Correspondence to: Martina Smolic, University of Osijek, Faculty of Medicine, Department of Pharmacology; Faculty of Dental Medicine and Health, Department of Pharmacology and Biochemistry, J. Huttlera 4, Osijek 31000, Croatia. ORCID: https://orcid.org/0000-0002-6867-826X. Tel: + 385-31-512-800, Fax: +385-31-512-833, E-mail:
| |
Collapse
|
4
|
Ibrahim Fouad G, R Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats. Mol Cell Biochem 2021; 476:3433-3448. [PMID: 33973131 DOI: 10.1007/s11010-021-04173-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Amiodarone (AMD) is a widely used antiarrhythmic drug prescribed to treat cardiac tachyarrhythmias; however, AMD has been reported to provoke pulmonary fibrosis (PF) and hepatotoxicity. This study aimed to investigate the influence of alpha lipoic acid (ALA) on AMD-induced PF and hepatotoxicity in male Wistar rats. AMD administration resulted in elevated lung contents of hydroxyproline (Hyp), malondialdehyde (MDA), and increased serum levels of transforming growth factor beta-1 (TGF-β1), interferon-γ (IFN-γ), alanine amino transaminase (ALT), aspartate amino transaminase (AST), total cholesterol (TC), and glucose. On the other side, lung content of glutathione reduced (GSH) and serum levels of total anti-oxidant capacity (TAC) were significantly decreased. Histopathologically, AMD caused PF, produced a mild hepatic injury, and increased expression of alpha smooth muscle actin (α-SMA). Treatment with ALA produced a significant reversal of the oxidative stress, fibrosis, and inflammation parameters with reductions in α-SMA expressions, leading to amelioration of histopathological lesions. ALA might provide supportive therapy in AMD-receiving cardiovascular patients.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|