1
|
Ji C, Chen Y, Si M, Chen X. The impact of biocorrosion and titanium ions release on peri-implantitis. Clin Oral Investig 2025; 29:155. [PMID: 39998661 DOI: 10.1007/s00784-025-06186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES Biofilm accumulation is considered the primary cause of peri-implant inflammation. Still, metallosis caused by an increased concentration of titanium ions at the site of peri-implantitis site cannot be ignored. Whether titanium ions alone or in concert with bacterial biofilm trigger inflammation and bone destruction in peri-implant tissues remains unproven. MATERIALS AND METHODS Articles were retrieved from PubMed/Medline, Web of Science. All studies focusing on titanium ions release in peri-implant reactions were included and evaluated. RESULTS Titanium implants are considered non-inert and may release titanium ions in the intraoral microenvironment, the most important of which is the acidic environment created by bacterial biofilms. Although the correlation between titanium ion release and the incidence or progression of peri-implantitis is controversial, several studies have confirmed the potential role of titanium ions. Diffusion or entry of titanium ions into the circulation may be a scavenging effect on local titanium ions but can cause systemic adverse effects. However, existing measures are not yet able to balance reducing biocorrosion and maintaining osteogenic results, and the exploration of new materials requires long-term clinical data. CONCLUSIONS Titanium ions have potential impacts on peri-implant tissue and systemic circulation. Titanium ions are closely associated with bacterial biofilms in the occurrence and development of periimplantitis. The preventive strategies for the release and action of titanium ions remain to be explored. CLINICAL RELEVANCE Our findings may provide the hope of shedding light on the pathogenesis of peri-implantitis and its treatment.
Collapse
Affiliation(s)
- Chonghao Ji
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yaqian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Shigematsu M, Takeda K, Matsunaga S, Sendai Y, Matsuura N, Suzuki R, Azuma T, Sasaki H, Okumura K, Sekine H, Yajima Y, Ohno T. Subgingival titanium wire implantation induces weak inflammatory responses but does not promote substantial T cell activation. Dent Mater J 2023; 42:633-640. [PMID: 37423721 DOI: 10.4012/dmj.2022-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Titanium is a biocompatible material commonly used for dental treatments. However, the detailed mechanism underlying the weak biological activity of titanium has not been elucidated. We investigated both the inflammatory responses and T cell activation induced by solid titanium in the gingiva in mice. Both titanium and nickel wire implantation promoted neutrophil infiltration into the gingiva on day 2. Nickel, but not titanium, wire implantation enhanced proinflammatory cytokine expression and dendritic cell activity in gingival tissue by day 2. Nickel wire implantation enhanced the activity of T cells in draining lymph nodes on day 5. Moreover, T cell and neutrophil infiltration and elevated proinflammatory cytokine expression in the gingival tissue were still observed on day 5. However, no such augmented biological responses were observed after titanium wire implantation. These findings suggest that, unlike nickel, solid titanium does not induce sufficient inflammatory responses leading to T cell activation in gingival tissue.
Collapse
Affiliation(s)
- Masaki Shigematsu
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Yuka Sendai
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Nobutaka Matsuura
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Reiya Suzuki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Toshifumi Azuma
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biochemistry, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Atopy Research Center, Graduate School of Medicine, Juntendo University
| | - Hideshi Sekine
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Fixed Prosthodontics, Tokyo Dental College
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Tatsukuni Ohno
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
| |
Collapse
|
4
|
Yang L, Wang ZA, Geng R, Deng H, Niu S, Zuo H, Weng S, He J, Xu X. White Spot Syndrome Virus (WSSV) Inhibits Hippo Signaling and Activates Yki To Promote Its Infection in Penaeus vannamei. Microbiol Spectr 2023; 11:e0236322. [PMID: 36475933 PMCID: PMC9927087 DOI: 10.1128/spectrum.02363-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is a serious threat to shrimp aquaculture, especially Pacific white shrimp, Penaeus vannamei, the most farmed shrimp in the world. Activation of the Hippo-Yki signaling pathway, characterized by the intracellular Hippo-Wts kinase cascade reactions and the phosphorylation and cytoplasmic retention of Yki, is widely involved in various life activities. The current work established the fundamental structure and signal transduction profile of the Hippo-Yki pathway in P. vannamei and further investigated its role in viral infection. We demonstrated that WSSV promoted the dephosphorylation and nuclear translocation of Yki, suggesting that Hippo signaling is impaired and Yki is activated after WSSV infection in shrimp. In vivo, Yki gene silencing suppressed WSSV infection, while Hippo and Wts silencing promoted it, indicating a positive role of Hippo signaling in antiviral response. Further analyses showed that Yki suppressed Dorsal pathway activation and inhibited hemocyte apoptosis in WSSV-infected shrimp, while Hippo and Wts showed opposite effects, which contributed to the role of Hippo signaling in WSSV infection. Therefore, the current study suggests that WSSV annexes Yki to favor its infection in shrimp by inhibiting Hippo signaling. IMPORTANCE White spot syndrome virus (WSSV) is one of the most harmful viral pathogens to shrimp. The pathological mechanism of WSSV infection remains unclear to date. The Hippo-Yki signaling pathway is important for various biological processes and is extensively involved in mammalian immunity, but little is known about its role in infectious diseases in invertebrates. Based on revealing the fundamental structure of the shrimp Hippo pathway, this study investigated its implication in the pathogenesis of WSSV disease. We demonstrated that WSSV enhanced Yki activation by inhibiting Hippo signaling in shrimp. The activated Yki promoted WSSV infection by inhibiting hemocyte apoptosis and suppressing the activation of Dorsal, an NF-κB family member in shrimp that is critical for regulating antiviral response. Therefore, this study suggests that WSSV can hijack the Hippo-Yki signaling pathway to favor its infection in shrimp.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
6
|
Jia J, Feng L, Ye S, Ping R, Mo X, Zhang Y, Li X, Chen D. Therapeutic effect of chinese herbal medicine gu-ben-hua-shi (AESS) formula on atopic dermatitis through regulation of yes-associated protein. Front Pharmacol 2022; 13:929580. [PMID: 36313294 PMCID: PMC9597468 DOI: 10.3389/fphar.2022.929580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Atopic dermatitis (AD) is a chronic and recurrent skin disease. At present, there is a lack of sufficiently effective and safe medicines that can be used for a prolonged time and reduce the recurrence of AD. The Gu-Ben-Hua-Shi (AESS) formula has been used for many years with a good clinical effect on AD but its specific treatment mechanism is unknown. Methods: The main components of AESS were analyzed using ultra-high performance liquid chromatography (UPLC). The composition of AESS compounds in the serum from rats was analyzed using ultra-high performance liquid chromatography-mass spectrometry. An AD mouse model was constructed using 2,4-dinitrofluorobenzene stimulation in Balb/C mice and the effect on the reduction of skin lesions and Th1/Th2/Th17/Treg balance after AESS administration were measured. The effects of AESS serum on the proliferation and apoptosis of keratinocyte cell line HaCaT and adhesion of HaCaT to human monocyte cell line THP-1 were detected in an IFN-γ/TNF-α stimulated AD-like inflammatory cell model. The effects of Yes-associated protein (YAP) expression on the therapeutic effect and a related signaling pathway were also investigated. Results: In total, 10 components were confirmed using UPLC, namely five organic acids, three flavonoids, and two chromogenic ketones. Additionally, the similarity of the three batches of samples (S1–3) was above 0.98, indicating that the formula samples have good uniformity. These 10 compounds were also detected in rat serum, suggesting that they are absorbed into rat blood as prototype components. Furthermore, AESS effectively reduced the skin lesions in the AD mouse model, regulated the Th1/Th2/Th17/Treg imbalance, improved the proliferation ability of the AD-like cell model, and inhibited HaCaT apoptosis and adhesion to THP-1 cells. It also reduced the expression of YAP in Th17 and Treg cells of the mouse spleen and increased YAP expression in the skin. The change in YAP expression in keratinocytes weakened the curative effect of AESS, and AESS exerted its effects through the NF-κB signaling pathway. Conclusion: AESS may play a role in the treatment of AD by affecting the expression of YAP. These findings can be used to promote its use as an alternative medication for prolonged use with fewer side effects.
Collapse
Affiliation(s)
- Jinjing Jia
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luyao Feng
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Siqi Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyue Ping
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumei Mo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dacan Chen, Xiong Li,
| | - Dacan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dacan Chen, Xiong Li,
| |
Collapse
|
7
|
Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. J Funct Biomater 2022; 13:jfb13040169. [PMID: 36278638 PMCID: PMC9589972 DOI: 10.3390/jfb13040169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Dental implants are widely used to restore missing teeth because of their stability and comfort characteristics. Peri-implant infection may lead to implant failure and other profound consequences. It is believed that peri-implantitis is closely related to the formation of biofilms, which are difficult to remove once formed. Therefore, endowing titanium implants with anti-adhesion properties is an effective method to prevent peri-implant infection. Moreover, anti-adhesion strategies for titanium implant surfaces are critical steps for resisting bacterial adherence. This article reviews the process of bacterial adhesion, the material properties that may affect the process, and the anti-adhesion strategies that have been proven effective and promising in practice. This article intends to be a reference for further improvement of the antibacterial adhesion strategy in clinical application and for related research on titanium implant surfaces.
Collapse
|
8
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Han S, Yuan R, Cui Y, He J, Wang QQ, Zhuo Y, Yang S, Gao H. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury In Vivo and In Vitro Through the PIP2/NF-κB/NLRP3 Signaling Pathway. Front Immunol 2022; 13:846384. [PMID: 35281058 PMCID: PMC8913935 DOI: 10.3389/fimmu.2022.846384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gene transcription is governed by epigenetic regulation that is essential for the pro-inflammatory mediators surge following pathological triggers. Acute lung injury (ALI) is driven by pro-inflammatory cytokines produced by the innate immune system, which involves the nod-like receptor 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathways. These two pathways are interconnected and share a common inducer the phosphatidylinositol 4,5-bisphosphate (PIP2), an epigenetic regulator of (Ribosomal ribonucleic acid (rRNA) gene transcription, to regulate inflammation by the direct inhibition of NF-κB phosphorylation and NLRP3 inflammasome activation. Herein, we report that hederasaponin C (HSC) exerted a therapeutic effect against ALI through the regulation of the PIP2/NF-κB/NLRP3 signaling pathway. In lipopolysaccharide (LPS)/lipopolysaccharide + adenosine triphosphate (LPS+ATP)-stimulated macrophages, our results showed that HSC remarkably inhibited the secretion of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). Moreover, HSC inhibited NF-κB/p65 nuclear translocation and the binding of PIP2 to transforming growth factor-β activated kinase 1 (TAK1). The intracellular calcium (Ca2+) level was decreased by HSC via the PIP2 signaling pathway, which subsequently inhibited the activation of NLRP3 inflammasome. HSC markedly alleviated LPS-induced ALI, restored lung function of mice, and rescued ALI-induced mice death. In addition, HSC significantly reduced the level of white blood cells (WBC), neutrophils, and lymphocytes, as well as pro-inflammatory mediators like IL-6, IL-1β, and TNF-α. Hematoxylin and eosin (H&E) staining results suggested HSC has a significant therapeutic effect on lung injury of mice. Interestingly, the PIP2/NF-κB/NLRP3 signaling pathway was further confirmed by the treatment of HSC with ALI, which is consistent with the treatment of HSC with LPS/LPS+ATP-stimulated macrophages. Overall, our findings revealed that HSC demonstrated significant anti-inflammatory activity through modulating the PIP2/NF-κB/NLRP3 axis in vitro and in vivo, suggesting that HSC is a potential therapeutic agent for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Hongwei Gao,
| |
Collapse
|
10
|
Xu J, Liu XY, Zhang Q, Liu H, Zhang P, Tian ZB, Zhang CP, Li XY. Crosstalk Among YAP, LncRNA, and Tumor-Associated Macrophages in Tumorigenesis Development. Front Oncol 2022; 11:810893. [PMID: 35071016 PMCID: PMC8770286 DOI: 10.3389/fonc.2021.810893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin-Yuan Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui-Ping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Liu Y, Zhang WS, Tang ZH, Ye DD, Su S, Zhang SM, Qiu J. Anti-inflammatory effects of the immobilization of SEMA4D on titanium surfaces in an endothelial cell/macrophage indirect coculture model. Biomed Mater 2021; 17. [PMID: 34731839 DOI: 10.1088/1748-605x/ac3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/03/2021] [Indexed: 11/12/2022]
Abstract
In this study, we established a procedure to prepare a Semaphorin4D (SEMA4D)-immobilized titanium surface and explored its effects on macrophage behaviors in an endothelial cell/macrophage indirect coculture model. The SEMA4D-bovine serum albumin complex was immobilized onto a preprocessed poly L-lysine titanium surface through NaOH hydrothermal treatment and self-assembly technology. All titanium specimens were examined for surface microstructure, surface element composition, and surface wettability by field emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and water contact angle measurement, respectively. Subsequently, we constructed an endothelial cell/macrophage indirect coculture model and evaluated the activation of NF-κB signaling pathway and the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1β) in macrophages. In XPS analysis, the SEMA4D-immobilized titanium surface appeared as a loose porous structure covered with uniform film, which exhibited better hydrophilicity than the control smooth titanium surface. In the indirect coculture model, SEMA4D attenuated the activation of NF-κB signaling pathway of lipopolysaccharide-stimulated THP-1 macrophages, thereby downregulating the expression of proinflammatory cytokines in macrophages. In conclusion, SEMA4D could be immobilized on titanium surfaces through NaOH hydrothermal treatment and self-assembly technology. Meanwhile, SEMA4D immobilization altered the characteristics of the titanium surfaces, which negatively regulated macrophage behaviors in the endothelial cell/macrophage indirect coculture model.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Wen-Si Zhang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Ze-Hua Tang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Di-di Ye
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Shan Su
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China
| | - Song-Mei Zhang
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, People's Republic of China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Chen J, Cheng J, Zhao C, Zhao B, Mi J, Li W. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling. Int J Biol Sci 2021; 17:4060-4072. [PMID: 34671220 PMCID: PMC8495397 DOI: 10.7150/ijbs.63305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway plays an important role in many pathophysiological processes, including cell proliferation and differentiation, cell death, cell migration and invasion. Because of its extensive functions, Hippo pathway is closely related to not only growth and development, but also many diseases, including inflammation and cancer. In this study, the role of Hippo pathway in craniofacial diseases and hard tissue remodeling was reviewed, in attempting to find new research directions.
Collapse
Affiliation(s)
- Jun Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
| | - Jingyi Cheng
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Cong Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Boxuan Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Jia Mi
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Wenjie Li
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China.,National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Wang X, Su P, Kang Y, Xu C, Qiu J, Wu J, Sheng P, Huang D, Zhang Z. Combination of Melatonin and Zoledronic Acid Suppressed the Giant Cell Tumor of Bone in vitro and in vivo. Front Cell Dev Biol 2021; 9:690502. [PMID: 34447747 PMCID: PMC8382950 DOI: 10.3389/fcell.2021.690502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Melatonin (Mlt) confers potential antitumor effects in various types of cancer. However, to the best of our knowledge, the role of Mlt in the giant cell tumor of bone (GCTB) remains unknown. Moreover, further research is required to assess whether Mlt can enhance the therapeutic effect of zoledronic acid (Zol), a commonly used anti-GCTB drug. In this research, we investigated the effects of Mlt, Zol, and the combination of these two drugs on GCTB cells’ characteristics, including cell proliferation, apoptosis, osteogenic differentiation, migration, and invasion. The cell counting kit-8 (CCK-8) assay, colony formation assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL), alkaline phosphatase (ALP) staining, alizarin red staining (ARS), scratch wound healing assay, and transwell experiment were performed, respectively. Our results showed that Mlt could effectively inhibit the proliferation, migration, and invasion of GCTB cells, as well as promote the apoptosis and osteogenic differentiation of tumor cells. Of note, a stronger antitumor effect was observed when Mlt was combined with Zol treatment. This therapeutic effect might be achieved by inhibiting the activation of both the Hippo and NF-κB pathways. In conclusion, our study suggests that Mlt can be a new treatment for GCTB, which could further enhance the antitumor effect of Zol.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Kang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caixia Xu
- Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinna Wu
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Puyi Sheng
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Chen W, Zhu WQ, Qiu J. Impact of exogenous metal ions on peri-implant bone metabolism: a review. RSC Adv 2021; 11:13152-13163. [PMID: 35423842 PMCID: PMC8697588 DOI: 10.1039/d0ra09395e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
The development of effective methods to promote the osseointegration of dental implants by surface modification is an area of intense research in dental materials science. Exogenous metal ions present in the implant and surface modifications are closely related to the bone metabolism around the implant. In the complex oral microenvironment, the release of metal ions caused by continuous corrosion of dental implants has an unfavorable impact on the surrounding tissue, and then affects osseointegration, leading to bad results such as loosening and falling off in the late stage of the implant. Besides, these ions can even be distributed in distant tissues and organs. Currently, surface modification techniques are being developed that involve different processing technologies including the introduction of exogenous metal ions with different properties onto the surface of implants to improve performance. However, most metal elements have some level of biological toxicity and can only be used within a safe concentration range to exert the optimum biological effects on recipients. In this paper, we review the adverse effects of metal ions on osseointegration and highlight the emerging applications for metal elements in improving the performance of dental implants.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| | - Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| |
Collapse
|