1
|
Guan S, Tang M. Exposure of quantum dots in the nervous system: Central nervous system risks and the blood-brain barrier interface. J Appl Toxicol 2024; 44:936-952. [PMID: 38062852 DOI: 10.1002/jat.4568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 07/21/2024]
Abstract
Quantum dots currently possess significant importance in the field of biomedical science. Upon introduction into the body, quantum dots exhibit a tendency to accumulate in diverse tissues including the central nervous system (CNS). Consequently, it becomes imperative to devote specific attention to their potential toxic effects. Moreover, the preservation of optimal CNS function relies heavily on blood-brain barrier (BBB) integrity, thereby necessitating its prioritization in neurotoxicological investigations. A more comprehensive understanding of the BBB and CNS characteristics, along with the underlying mechanisms that may contribute to neurotoxicity, will greatly aid researchers in the development of effective design strategies. This article offers an in-depth look at the methods used to reduce the harmful effects of quantum dots on the nervous system, alongside the progression of effective treatments for brain-related conditions. The focal point of this discussion is the BBB and its intricate association with the CNS and neurotoxicology. The discourse commences by recent advancements in the medical application of quantum dots are examined. Subsequently, elucidating the mechanisms through which quantum dots infiltrate the human body and traverse into the brain. Additionally, the discourse delves into the factors that facilitate the passage of quantum dots across the BBB, primarily encompassing the physicochemical properties of quantum dots and the BBB's inherent capacity for self-permeability alteration. Furthermore, a concluding summary is presented, emphasizing existing research deficiencies and identifying promising avenues for further investigation within this field.
Collapse
Affiliation(s)
- Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
Wang M, Lan S, Zhang W, Jin Q, Du H, Sun X, He L, Meng X, Su L, Liu G. Anti-Cancer Potency of Copper-Doped Carbon Quantum Dots Against Breast Cancer Progression. Int J Nanomedicine 2024; 19:1985-2004. [PMID: 38435754 PMCID: PMC10908338 DOI: 10.2147/ijn.s449887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The anti-cancer potency of copper-doped carbon quantum dots (Cu-CDs) against breast cancer progression needs more detailed investigations. Methods With urea and ethylene glycol applied as carbon sources and copper sulfate used as a reactive dopant, Cu-CDs were synthesized in the current study by a one-step hydrothermal synthesis method, followed by the characterization and biocompatibility evaluations of Cu-CDs. Subsequently, the anti-cancer potency of Cu-CDs against breast cancer progression was confirmed by these biochemical, molecular, and transcriptomic assessments, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, and transcriptomic assays of MDA-MB-231 cells. Results The biocompatibility of Cu-CDs was confirmed based on the non-significant changes in the pathological and physiological parameters in the Cu-CDs treated mice, as well as the noncytotoxic effect of Cu-CDs on normal cells. Moreover, the Cu-CDs treatments not only decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells but also induced the redox imbalance, cell cycle arrest, and apoptosis of MDA-MB-231 cells via ameliorating the mitochondrial dysfunctions and regulating the MAPK signaling pathway. Conclusion Our findings confirmed the biosafety and excellent anti-cancer potency of Cu-CDs against breast cancer progression by tapping into mechanisms that disrupt malignant behaviors and oxidative homeostasis of breast cancer cells.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lijun He
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiangyun Meng
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
4
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Fluorescent Carbon Quantum Dots for Effective Tumor Diagnosis: A Comprehensive Review. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Zhu P, Wang S, Zhang Y, Li Y, Liu Y, Li W, Wang Y, Yan X, Luo D. Carbon Dots in Biomedicine: A Review. ACS APPLIED BIO MATERIALS 2022; 5:2031-2045. [PMID: 35442016 DOI: 10.1021/acsabm.1c01215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the rapid development of science and technology, the effective treatment of cancer still threatens human life and health. However, the success of cancer treatment is closely related to early diagnosis, identification, and effective treatment. In recent years, with the strengthening of the development and research of nanomaterials for cancer diagnosis and treatment, researchers have found that carbon dots (CDs) have the advantages of wide absorption, excellent biocompatibility, diverse imaging characteristics, and photostability and are widely used in various fields, such as sensing, imaging, and drug/gene transportation. Recently, researchers also discovered that CDs could be used as an effective photosensitizer to generate active oxygen or convert light energy into heat under the stimulation of the external lasers, making them have the effects of photothermal and photodynamic therapy for cancer. In this review, we first outline the single-modal and multimodal imaging analysis of CDs in cancer cells. After introducing diversified imaging functions, we focused on the design and the latest research progress of CDs in phototherapy and introduced in detail the strategies of CDs in phototherapy treatment and the challenges faced by clinical applications. We hope that this overview can provide important insights for researchers and accelerate the pace of research on CDs in imaging-guided phototherapy treatment.
Collapse
Affiliation(s)
- Peide Zhu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China.,College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Siyang Wang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuqi Zhang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yinping Liu
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuying Wang
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Yan
- Department of Oncology, the Fifth Medical Center, The Chinese PLA General Hospital, Beijing 100853, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| |
Collapse
|
7
|
Fan X, Wang Y, Li B, Shen C, Sun Z, Zhan Y, Zhang Y. Highly luminescent pH-responsive carbon quantum dots for cell imaging. NANOTECHNOLOGY 2022; 33:265002. [PMID: 35299160 DOI: 10.1088/1361-6528/ac5ee5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CDs) have attracted tremendous interest owing to their idiosyncratic functions and wide-ranging applications. However, it remains a great challenge to empolder an integrated CDs combining high luminescence, biocompatibility and luminescence color tunability for bioimaging via simple approach. In this work, pH-responsive carbon quantum dots (Si-CDs) with high luminescence (quantum yield = 74.8%) were fabricated by one-step hydrothermal method using (3-mercaptopropyl) triethoxysilane (KH-580) as modifier for the first time. The optical properties of the as-prepared Si-CDs can be controlled from obvious green-blue-violet transformation by altering the pH. More importantly, the change is reversible and repeatable. In addition, the Si-CDs have good biocompatibility and chemically inertin vitrocell system simulation. Such non-toxic, environmental friendly, low-cost, inert CDs materials are promising candidates for biomedical and pH-sensitive sensors.
Collapse
Affiliation(s)
- Xiaohui Fan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yang Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Bo Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Chang Shen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhengguang Sun
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yuan Zhan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Yuhong Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
9
|
Reagen S, Wu Y, Liu X, Shahni R, Bogenschuetz J, Wu X, Chu QR, Oncel N, Zhang J, Hou X, Combs C, Vasquez A, Zhao JX. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43952-43962. [PMID: 34495635 DOI: 10.1021/acsami.1c10533] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule cis-cyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 μg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.
Collapse
Affiliation(s)
- Sarah Reagen
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Rahul Shahni
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jacob Bogenschuetz
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xu Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qianli R Chu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Nuri Oncel
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jin Zhang
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xiaodong Hou
- Institute for Energy Studies, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Antonio Vasquez
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Zhu P, Zhao X, Chen X, Li S, Ma J, Li J, Xu M, Gan L, Xu Q. Yellow emission N-doped fluorescent carbon dots as fluorescent nanoprobes for the detection of L-threonine in real samples. NEW J CHEM 2021. [DOI: 10.1039/d1nj01812d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High quantum yield carbon dots and their applications in the detection of L-threonine.
Collapse
Affiliation(s)
- Peide Zhu
- College of New Energy and Materials
- China University of Petroleum-Beijing
- Beijing 102249
- China
| | - Xuelin Zhao
- Department of Orthopedics
- the First Medical Centre
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Xinyi Chen
- College of New Energy and Materials
- China University of Petroleum-Beijing
- Beijing 102249
- China
| | - Shouzhen Li
- College of New Energy and Materials
- China University of Petroleum-Beijing
- Beijing 102249
- China
| | - Junfei Ma
- College of New Energy and Materials
- China University of Petroleum-Beijing
- Beijing 102249
- China
| | - Jianxiong Li
- Department of Orthopedics
- the First Medical Centre
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Meng Xu
- Department of Orthopedics
- the First Medical Centre
- Chinese PLA General Hospital
- Beijing 100853
- China
| | - Lu Gan
- Department of Pediatrics
- Changhai Hospital
- Naval Military Medical University
- Shanghai
- China
| | - Quan Xu
- College of New Energy and Materials
- China University of Petroleum-Beijing
- Beijing 102249
- China
| |
Collapse
|