1
|
Budama-Kilinc Y, Gok B, Cetin Aluc C, Kecel-Gunduz S. In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ 2023; 11:e15523. [PMID: 37309371 PMCID: PMC10257901 DOI: 10.7717/peerj.15523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Onopordum acanthium is a medicinal plant with many important properties, such as antibacterial, anticancer, and anti-hypotensive properties. Although various studies reported the biological activities of O. acanthium, there is no study on its nano-phyto-drug formulation. The aim of this study is to develop a candidate nano-drug based on phytotherapeutic constituents and evaluate its efficiency in vitro and in silico. In this context, poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of O. acanthium extract (OAE) were synthesized and characterized. It was determined that the average particle size of OAE-PLGA-NPs was 214.9 ± 6.77 nm, and the zeta potential was -8.03 ± 0.85 mV, and PdI value was 0.064 ± 0.013. The encapsulation efficiency of OAE-PLGA-NPs was calculated as 91%, and the loading capacity as 75.83%. The in vitro drug release study showed that OAE was released from the PLGA NPs with 99.39% over the 6 days. Furthermore, the mutagenic and cytotoxic activity of free OAE and OAE-PLGA-NPs were evaluated by the Ames test and MTT test, respectively. Although 0.75 and 0.37 mg/mL free OAE concentrations caused both frameshift mutation and base pair substitution (p < 0.05), the administered OAE-PLGA NP concentrations were not mutagenic. It was determined with the MTT analysis that the doses of 0.75 and 1.5 mg/mL of free OAE had a cytotoxic effect on the L929 fibroblast cell line (p < 0.05), and OAE-PLGA-NPs had no cytotoxic effect. Moreover, the interaction between the OAE and S. aureus was also investigated using the molecular docking analysis method. The molecular docking and molecular dynamics (MD) results were implemented to elucidate the S. aureus MurE inhibition potential of OAE. It was shown that quercetin in the OAE content interacted significantly with the substantial residues in the catalytic pocket of the S. aureus MurE enzyme, and quercetin performed four hydrogen bond interactions corresponding to a low binding energy of -6.77 kcal/mol with catalytic pocket binding residues, which are crucial for the inhibition mechanism of S. aureus MurE. Finally, the bacterial inhibition values of free OAE and OAE-PLGA NPs were determined against S. aureus using a microdilution method. The antibacterial results showed that the inhibition value of the OAE-PLGA NPs was 69%. In conclusion, from the in vitro and in silico results of the nano-sized OAE-PLGA NP formulation produced in this study, it was evaluated that the formulation may be recommended as a safe and effective nano-phyto-drug candidate against S. aureus.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
- Abdi Ibrahim Production Facilities, Abdi Ibrahim Pharmaceuticals, Istanbul, Turkey
| | | |
Collapse
|
2
|
Priya PS, Guru A, Meenatchi R, Haridevamuthu B, Velayutham M, Seenivasan B, Pachaiappan R, Rajagopal R, Kuppusamy P, Juliet A, Arockiaraj J. Syringol, a wildfire residual methoxyphenol causes cytotoxicity and teratogenicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160968. [PMID: 36549541 DOI: 10.1016/j.scitotenv.2022.160968] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.
Collapse
Affiliation(s)
- P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, 600 077 Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, SIMATS, 600 077, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang X, Mahajan JS, J Korley LT, Epps TH, Wu C. Reduced genotoxicity of lignin-derivable replacements to bisphenol A studied using in silico, in vitro, and in vivo methods. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503577. [PMID: 36669816 DOI: 10.1016/j.mrgentox.2022.503577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Bisguaiacols, lignin-derivable bisphenols, are considered promising and possibly safer alternatives to bisphenol A (BPA), but comprehensive toxicity investigations are needed to ensure safety. Most toxicity studies of BPA and its analogues have focused on potential estrogenic activity, and only limited toxicological data are available on other toxicity aspects, such as genotoxicity at low exposure levels. In this study, the genotoxicity of six lignin-derivable bisguaiacols with varying regioisomer contents and degrees of methoxy substitution was investigated using a multi-tiered method, consisting of in silico simulations, in vitro Ames tests, and in vivo comet tests. The toxicity estimation software tool, an application that predicts toxicity of chemicals using quantitative structure-activity relationships, calculated that the majority of the lignin-derivable bisguaiacols were non-mutagenic. These results were supported by Ames tests using five tester strains (TA98, TA100, TA102, TA1535, and TA1537) at concentrations ranging from 0.5 pmol/plate to 5 nmol/plate. The potential genotoxicity of bisguaiacols was further evaluated using in vivo comet testing in fetal chicken livers, and in addition to the standard alkaline comet assay, the formamidopyrimidine DNA glycosylase enzyme-modified comet assay was employed to investigate oxidative DNA damage in the liver samples. The oxidative stress analyses indicated that the majority of lignin-derivable analogues showed no signs of mutagenicity (mutagenic index < 1.5) or genotoxicity, in comparison to BPA and bisphenol F, likely due to the methoxy groups on the lignin-derivable aromatics. These findings reinforce the potential of lignin-derivable bisphenols as safer alternatives to BPA.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jignesh S Mahajan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Thomas H Epps
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
4
|
Conti V, Salusti P, Romi M, Cantini C. Effects of Drying Methods and Temperatures on the Quality of Chestnut Flours. Foods 2022; 11:foods11091364. [PMID: 35564087 PMCID: PMC9101811 DOI: 10.3390/foods11091364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
The demand for chestnut flour is growing because of its use in gluten-free products. Previous studies have correlated the quality of chestnut flours to the drying temperature and technology applied. This work is a novel study on the role of the traditional drying method with a wood fire in a “metato” building for flour compared with a food dryer at 40 °C or 70 °C. The contents of antioxidants, total polyphenols and sugars were determined as well as the presence of toxic volatiles or aflatoxins. The flour, resulting from the traditional method, presented lower polyphenol content and antioxidant power compared to the others. The content of the sugars was similar to the flours obtained after drying with hot air, both at 40 °C and 70 °C. The toxic volatile molecules, furfural, guaiacol, and o-cresol, were found. There was no correlation between the aflatoxin content and the presence of damage in chestnut fruits. The traditional method should not be abandoned since it confers a pleasant smoky taste to the product, but it is necessary to regulate the level and steadiness of temperature. Future research needs to be directed to the quantification of harmful volatile compounds and their correlation with the quantity of smoke emitted by the wood fire.
Collapse
Affiliation(s)
- Veronica Conti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
- Correspondence: ; Tel.: +39-0577-232392
| | - Patrizia Salusti
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Claudio Cantini
- National Research Council of Italy, Institute for Bioeconomy (CNR-IBE), 58022 Follonica, Italy; (P.S.); (C.C.)
| |
Collapse
|