1
|
Đurić L, Milanović M, Drljača Lero J, Milošević N, Milić N. In silico analysis of endocrine-disrupting potential of triclosan, bisphenol A, and their analogs and derivatives. J Appl Toxicol 2024; 44:1897-1913. [PMID: 39129338 DOI: 10.1002/jat.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Owning to the increasing body of evidence about the ubiquitous exposure to endocrine disruptors (EDCs), particularly bisphenol A (BPA), and associated health effects, BPA has been gradually substituted with insufficiently tested structural analogs. The unmanaged excessive use of antimicrobial agents such as triclosan (TCS) during the COVID-19 outbreak has also raised concerns about its possible interferences with hormonal functions. The similarity of BPA and estradiol, as well as TCS and non-steroidal estrogens, imply that endocrine-disrupting properties of their analogs could be predicted based on the chemical structure. Hence, this study aimed to evaluate the endocrine-disrupting potential of BPA substitutes as well as TCS derivatives and degradation/biotransformation metabolites, in comparison to BPA and TCS based on their molecular properties, computational predictions of pharmacokinetics and binding affinities to nuclear receptors. Based on the obtained results several under-researched BPA analogs exhibited higher binding affinities for nuclear receptors than BPA. Notable analogs included compounds detected in receipts (DD-70, BTUM-70, TGSA, and BisOPP-A), along with a flame retardant, BDP. The possible health hazards linked to exposure to TCS and its mono-hydroxylated metabolites were also found. Further research is needed in order to elucidate the health impacts of these compounds and promote better regulation practices.
Collapse
Affiliation(s)
- Larisa Đurić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Maja Milanović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Shen C, Zhang K, Shi J, Yang J, Wang Y, Li Z, Dai H, Yang W. Association between brominated flame retardants and risk of endocrine-related cancer: A systematic review and meta-analysis. Toxicol Lett 2024; 394:11-22. [PMID: 38387762 DOI: 10.1016/j.toxlet.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/17/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The incidence of endocrine-related cancer, which includes tumors in major endocrine glands such as the breast, thyroid, pituitary, and prostate, has been increasing year by year. Various studies have indicated that brominated flame retardants (BFRs) are neurotoxic, endocrine-toxic, reproductive-toxic, and even carcinogenic. However, the epidemiological relationship between BFR exposure and endocrine-related cancer risk remains unclear. METHODS We searched the PubMed, Google Scholar, and Web of Science databases for articles evaluating the association between BFR exposure and endocrine-related cancer risk. The odds ratio (OR) and its corresponding 95% confidence interval (95% CI) were used to assess the association. Statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Begg's test was performed to evaluate the publication bias. RESULTS We collected 15 studies, including 6 nested case-control and 9 case-control studies, with 3468 cases and 4187 controls. These studies assessed the risk of breast cancer, thyroid cancer, and endocrine-related cancers in relation to BFR levels. Our findings indicate a significant association between BFR exposure in adipose tissue and an increased risk of breast cancer. However, this association was not observed for thyroid cancer. Generally, BFR exposure appears to elevate the risk of endocrine-related cancers, with a notable increase in risk linked to higher levels of BDE-28, a specific polybrominated diphenyl ether congener. CONCLUSIONS In conclusion, although this meta-analysis has several limitations, our results suggest that BFR exposure is a significant risk factor for breast cancer, and low-brominated BDE-28 exposure could significantly increase the risk of endocrine-related cancers. Further research is essential to clarify the potential causal relationships between BFRs and endocrine-related cancers, and their carcinogenic mechanisms.
Collapse
Affiliation(s)
- Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jingyi Shi
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yu Wang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
3
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
4
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
An Analysis of the Structural Relationship between Thyroid Hormone-Signaling Disruption and Polybrominated Diphenyl Ethers: Potential Implications for Male Infertility. Int J Mol Sci 2023; 24:ijms24043296. [PMID: 36834711 PMCID: PMC9964322 DOI: 10.3390/ijms24043296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a common class of anthropogenic organobromine chemicals with fire-retardant properties and are extensively used in consumer products, such as electrical and electronic equipment, furniture, textiles, and foams. Due to their extensive use, PBDEs have wide eco-chemical dissemination and tend to bioaccumulate in wildlife and humans with many potential adverse health effects in humans, such as neurodevelopmental deficits, cancer, thyroid hormone disruption, dysfunction of reproductive system, and infertility. Many PBDEs have been listed as chemicals of international concern under the Stockholm Convention on Persistent Organic Pollutants. In this study, the aim was to investigate the structural interactions of PBDEs against thyroid hormone receptor (TRα) with potential implications in reproductive function. Structural binding of four PBDEs, i.e., BDE-28, BDE-100, BDE-153 and BDE-154 was investigated against the ligand binding pocket of TRα using Schrodinger's induced fit docking, followed by molecular interaction analysis and the binding energy estimation. The results indicated the stable and tight binding of all four PDBE ligands and similarity in the binding interaction pattern to that of TRα native ligand, triiodothyronine (T3). The estimated binding energy value for BDE-153 was the highest among four PBDEs and was more than that of T3. This was followed by BDE-154, which is approximately the same as that of TRα native ligand, T3. Furthermore, the value estimated for BDE-28 was the lowest; however, the binding energy value for BDE-100 was more than BDE-28 and close to that of TRα native ligand, T3. In conclusion, the results of our study suggested the thyroid signaling disruption potential of indicated ligands according to their binding energy order, which can possibly lead to disruption of reproductive function and infertility.
Collapse
|
6
|
Singh V, Cortes-Ramirez J, Toms LM, Sooriyagoda T, Karatela S. Effects of Polybrominated Diphenyl Ethers on Hormonal and Reproductive Health in E-Waste-Exposed Population: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137820. [PMID: 35805479 PMCID: PMC9265575 DOI: 10.3390/ijerph19137820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023]
Abstract
Electronic waste management is a global rising concern that is primarily being handled by informal recycling practices. These release a mix of potentially hazardous chemicals, which is an important public health concern. These chemicals include polybrominated diphenyl ethers (PBDEs), used as flame retardants in electronic parts, which are persistent in nature and show bioaccumulative characteristics. Although PBDEs are suspected endocrine disruptors, particularly targeting thyroid and reproductive hormone functions, the relationship of PBDEs with these health effects are not well established. We used the Navigation Guide methodology to conduct a systematic review of studies in populations exposed to e-waste to better understand the relationships of these persistent flame retardants with hormonal and reproductive health. We assessed nineteen studies that fit our pre-determined inclusion criteria for risk of bias, indirectness, inconsistency, imprecision, and other criteria that helped rate the overall evidence for its quality and strength of evidence. The studies suggest PBDEs may have an adverse effect on thyroid hormones, reproductive hormones, semen quality, and neonatal health. However, more research is required to establish a relationship of these effects in the e-waste-exposed population. We identified the limitations of the data available and made recommendations for future scientific work.
Collapse
Affiliation(s)
- Vishal Singh
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
- Correspondence:
| | - Javier Cortes-Ramirez
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Children’s Health and Environment Program, The University of Queensland, Brisbane, QLD 4101, Australia
- Faculty of Medical and Health Sciences, Universidad de Santander, Cúcuta 540003, Colombia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Thilakshika Sooriyagoda
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Shamshad Karatela
- School of Pharmacy, University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Mackay, QLD 4740, Australia
| |
Collapse
|
7
|
Insights into the Endocrine Disrupting Activity of Emerging Non-Phthalate Alternate Plasticizers against Thyroid Hormone Receptor: A Structural Perspective. TOXICS 2022; 10:toxics10050263. [PMID: 35622676 PMCID: PMC9145736 DOI: 10.3390/toxics10050263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine (T3) are hormones of the HPT axis which are essential for regulation of metabolism, heart rate, body temperature, growth, development, etc. In this study, potential endocrine-disrupting activity of the most common phthalate plasticizer, DEHP, and emerging non-phthalate alternate plasticizers, DINCH, ATBC, and DEHA against thyroid hormone receptor (TRα) were characterized. The structural binding characterization of indicated ligands was performed against the TRα ligand binding site employing Schrodinger’s induced fit docking (IFD) approach. The molecular simulations of interactions of the ligands against the residues lining a TRα binding pocket, including bonding interactions, binding energy, docking score, and IFD score were analyzed. In addition, the structural binding characterization of TRα native ligand, T3, was also done for comparative analysis. The results revealed that all ligands were placed stably in the TRα ligand-binding pocket. The binding energy values were highest for DINCH, followed by ATBC, and were higher than the values estimated for TRα native ligand, T3, whereas the values for DEHA and DEHP were similar and comparable to that of T3. This study suggested that all the indicated plasticizers have the potential for thyroid hormone disruption with two alternate plasticizers, DINCH and ATBC, exhibiting higher potential for thyroid dysfunction compared to DEHA and DEHP.
Collapse
|