1
|
Sulukoğlu EK, Günaydın Ş, Kalın ŞN, Altay A, Budak H. Diffractaic acid exerts anti-cancer effects on hepatocellular carcinoma HepG2 cells by inducing apoptosis and suppressing migration through targeting thioredoxin reductase 1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5745-5755. [PMID: 38308689 PMCID: PMC11329542 DOI: 10.1007/s00210-024-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC. XTT assay results showed that DA exhibited strong cytotoxicity on HepG2 cells with an IC50 value of 78.07 µg/mL at 48 h. Flow cytometric analysis results revealed that DA displayed late apoptotic and necrotic effects on HepG2 cells. Consistent with these findings, real-time PCR results showed that DA did not alter the BAX/BCL2 ratio in HepG2 cells but upregulated the P53 gene. Moreover, the wound healing assay results revealed a strong anti-migratory effect of DA in HepG2 cells. Real-time PCR and Western blot analyses demonstrated that DA increased TRXR1 gene and protein expression levels, whereas enzyme activity studies disclosed that DA inhibited TRXR1. These findings suggest that DA has an anticancer effect on HepG2 cells by targeting the enzymatic inhibition of TRXR1. In conclusion, DA as a TRXR1 inhibitor can be considered an effective chemotherapeutic agent which may be a useful lead compound for the treatment of HCC.
Collapse
Affiliation(s)
- Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Science, Department of Molecular Biology and Genetics, Erzurum Technical University, 25100, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, 43100, Kütahya, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Budak B, Kalın ŞN, Yapça ÖE. Antiproliferative, antimigratory, and apoptotic effects of diffractaic and vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1525-1535. [PMID: 37658214 DOI: 10.1007/s00210-023-02698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 μg/ml and 66.53 μg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.
Collapse
Affiliation(s)
- Büşra Budak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Ömer Erkan Yapça
- Department of Obstetrics and Gynecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
3
|
Zhou R, Liu R, Kang KB, Kim W, Hur JS, Kim H. The Depside Derivative Pericodepside Inhibits Cancer Cell Metastasis and Proliferation by Suppressing Epithelial-Mesenchymal Transition. ACS OMEGA 2024; 9:6828-6836. [PMID: 38371795 PMCID: PMC10870356 DOI: 10.1021/acsomega.3c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
A depside derivative, named pericodepside (2), along with the known depside proatranorin III (1), was isolated from the solid cultivation of an Ascochyta rabiei strain that heterologously expresses atr1 and atr2 that are involved in the biosynthesis of atranorin in a fruticose lichen, Stereocaulon alpinum. The structure of 2 was determined by 1D and 2D NMR and MS spectroscopic data. The structure of 2 consisted of a depside-pericosine conjugate, with the depside moiety being identical to that found in 1, suggesting that 1 acted as an intermediate during the formation of 2 through the esterification process. Pericodepside (2) strongly suppressed cell invasion and proliferation by inhibiting epithelial-mesenchymal transition and the transcriptional activities of β-catenin, STAT, and NF-κB in U87 (glioma cancer), MCF-7 (breast cancer), and PC3 (prostate cancer) cell lines.
Collapse
Affiliation(s)
- Rui Zhou
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Rundong Liu
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Kyo Bin Kang
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Wonyong Kim
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
- Department
of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seoun Hur
- Korean
Lichen Research Institute, Sunchon National
University, Sunchon 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
4
|
Queffelec J, Flórez-Fernández N, Torres MD, Domínguez H. Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. Int J Biol Macromol 2024; 258:128859. [PMID: 38134984 DOI: 10.1016/j.ijbiomac.2023.128859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Microwave hydrothermal treatment was selected to extract valuable fractions with bioactive and gelling properties from Evernia prunastri lichen with potential for topical applications. The impact of the extraction processing conditions on the soluble extracts, mucilage fraction and residual solid phase was analyzed within a lichen global valorization approach. A particular stress was made on the thermo-rheological and structural characteristics of the extracted glucan and galactomannan polymers, the corresponding gelled matrices, and their cosmetic feasibility. Results revealed that the proposed microwave-assisted treatment showed a relevant influence on the phytochemical features of the aqueous soluble extracts, accounting the major protein content at 120 °C and the enhanced antioxidant and anti-tyrosinase properties at 140 °C. Extracts at 200 °C showed the highest anti-inflammatory (COX-1 and COX-2 inhibition) efficacies. The biopolymer analyses indicated that those recovered after lichen hydrothermal treatment at 160 °C featured a good extraction performance, the highest molecular weight, apparent viscosity, and antiproliferative potential. The thermo-rheological properties of the corresponding matrices formulated at 10 % and 60 or 80 °C exhibited the strongest and most thermo-reversible characteristics, as well as antifreezing feasibility. Another advantage of the selected fractions was the absence of skin irritation according to the in vitro skin irritation assay.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain.
| | - H Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| |
Collapse
|
5
|
Ameziane El Hassani I, Altay A, Karrouchi K, Yeniçeri E, Türkmenoğlu B, Assila H, Boukharssa Y, Ramli Y, Ansar M. Novel Pyrazole-Based Benzofuran Derivatives as Anticancer Agents: Synthesis, Biological Evaluation, and Molecular Docking Investigations. Chem Biodivers 2023; 20:e202301145. [PMID: 37781955 DOI: 10.1002/cbdv.202301145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
In this work, the design, synthesis, and mechanistic studies of novel pyrazole-based benzofuran derivatives 1-8 as anticancer agents were discussed. Cytotoxic potency of the title compounds was evaluated against the lung carcinoma A-549, human-derived colorectal adenocarcinoma HT-29, breast adenocarcinoma MCF-7 cells as well as mouse fibroblast 3T3-L1 cells using XTT assay. Anticancer mechanistic studies were carried out with flow cytometry. XTT results revealed that all compounds exhibited dose-dependent anti-proliferative activity against the tested cancer cells, and especially compound 2 showed the strongest anti-proliferative activity with an IC50 value of 7.31 μM and the highest selectivity (15.74) on MCF-7 cells. Flow cytometry results confirmed that the cytotoxic power of compound 2 on MCF-7 cells is closely related to mitochondrial membrane damage, caspase activation, and apoptosis orientation. Finally, molecular docking studies were applied to determine the interactions between compound 2 and caspase-3 via in-silico approaches. By molecular docking studies, free binding energy (ΔGBind), docking score, Glide score values as well as amino acid residues in the active binding site were determined. Consequently, these results constitute preliminary data for in vivo anticancer studies and have the potential as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Issam Ameziane El Hassani
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Esma Yeniçeri
- Department of Chemistry, Institute of Science and Technology, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Hamza Assila
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youness Boukharssa
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, 10100, Rabat, Morocco
| |
Collapse
|
6
|
Günaydın Ş, Sulukoğlu EK, Kalın ŞN, Altay A, Budak H. Diffractaic acid exhibits thioredoxin reductase 1 inhibition in lung cancer A549 cells. J Appl Toxicol 2023; 43:1676-1685. [PMID: 37329199 DOI: 10.1002/jat.4505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths all over the world. Therefore, it has gained importance in the development of new chemotherapeutic strategies to identify anticancer agents with low side effects, reliable, high anticancer potential, and specific to lung cancer cells. Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for lung cancer treatment because of its overexpression in tumor cells. Here, we aimed to examine the anticancer effect of diffractaic acid, a lichen secondary metabolite, in A549 cells by comparing it with the commercial chemotherapeutic drug carboplatin and also to investigate whether the anticancer effect of diffractaic acid occurs via TrxR1-targeting. The IC50 value of diffractaic acid on A549 cells was determined as 46.37 μg/mL at 48 h, and diffractaic acid had stronger cytotoxicity than carboplatin in A549 cells. qPCR results revealed that diffractaic acid promoted the intrinsic apoptotic pathway through the upregulation of the BAX/BCL2 ratio and P53 gene in A549 cells, which is consistent with the flow cytometry results. Furthermore, migration analysis results indicated that diffractaic acid impressively suppressed the migration of A549 cells. While the enzymatic activity of TrxR1 was inhibited by diffractaic acid in A549 cells, no changes were seen in the quantitative expression levels of gene and protein. These findings provide fundamental data on the anticancer effect of diffractaic acid on A549 cells targeting TrxR1 activity, suggesting that it could be considered a chemotherapeutic agent for lung cancer therapy.
Collapse
Affiliation(s)
- Şükran Günaydın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emine Karaca Sulukoğlu
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- Science Faculty, Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Şeyda Nur Kalın
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Ahmet Altay
- Faculty of Science and Arts, Department of Chemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|