1
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
2
|
Fernandes L, Carvalho S, Carneiro I, Henrique R, Tuchin VV, Oliveira HP, Oliveira LM. Diffuse reflectance and machine learning techniques to differentiate colorectal cancer ex vivo. CHAOS (WOODBURY, N.Y.) 2021; 31:053118. [PMID: 34240956 DOI: 10.1063/5.0052088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, we used machine learning techniques to reconstruct the wavelength dependence of the absorption coefficient of human normal and pathological colorectal mucosa tissues. Using only diffuse reflectance spectra from the ex vivo mucosa tissues as input to algorithms, several approaches were tried before obtaining good matching between the generated absorption coefficients and the ones previously calculated for the mucosa tissues from invasive experimental spectral measurements. Considering the optimized match for the results generated with the multilayer perceptron regression method, we were able to identify differentiated accumulation of lipofuscin in the absorption coefficient spectra of both mucosa tissues as we have done before with the corresponding results calculated directly from invasive measurements. Considering the random forest regressor algorithm, the estimated absorption coefficient spectra almost matched the ones previously calculated. By subtracting the absorption of lipofuscin from these spectra, we obtained similar hemoglobin ratios at 410/550 nm: 18.9-fold/9.3-fold for the healthy mucosa and 46.6-fold/24.2-fold for the pathological mucosa, while from direct calculations, those ratios were 19.7-fold/10.1-fold for the healthy mucosa and 33.1-fold/17.3-fold for the pathological mucosa. The higher values obtained in this study indicate a higher blood content in the pathological samples used to measure the diffuse reflectance spectra. In light of such accuracy and sensibility to the presence of hidden absorbers, with a different accumulation between healthy and pathological tissues, good perspectives become available to develop minimally invasive spectroscopy methods for in vivo early detection and monitoring of colorectal cancer.
Collapse
Affiliation(s)
- Luís Fernandes
- Center for Innovation in Engineering and Industrial Technology, Polytechnic of Porto-School of Engineering, 4249-015 Porto, Portugal
| | - Sónia Carvalho
- Department of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Isa Carneiro
- Department of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov 410012, Russia
| | - Hélder P Oliveira
- Institute for Systems and Computer Engineering, Technology and Science, INESC TEC, 4200-465 Porto, Portugal
| | - Luís M Oliveira
- Center for Innovation in Engineering and Industrial Technology, Polytechnic of Porto-School of Engineering, 4249-015 Porto, Portugal
| |
Collapse
|
3
|
Abstract
The study of the optical properties of biological tissues for a wide spectral range is necessary for the development and planning of noninvasive optical methods to be used in clinical practice. In this study, we propose a new method to calculate almost all optical properties of tissues as a function of wavelength directly from spectral measurements. Using this method, and with the exception of the reduced scattering coefficient, which was obtained by traditional simulation methods, all the other optical properties were calculated in a simple and fast manner for human and pathological colorectal tissues. The obtained results are in good agreement with previous published data, both in magnitude and in wavelength dependence. Since this method is based on spectral measurements and not on discrete-wavelength experimental data, the calculated optical properties contain spectral signatures that correspond to major tissue chromophores such as DNA and hemoglobin. Analysis of the absorption bands of hemoglobin in the wavelength dependence of the absorption spectra of normal and pathological colorectal mucosa allowed to identify differentiated accumulation of a pigment in these tissues. The increased content of this pigment in the pathological mucosa may be used for the future development of noninvasive diagnostic methods for colorectal cancer detection.
Collapse
|
4
|
Bhattacharya M, Dutta A. Computational Modeling of the Photon Transport, Tissue Heating, and Cytochrome C Oxidase Absorption during Transcranial Near-Infrared Stimulation. Brain Sci 2019; 9:brainsci9080179. [PMID: 31357574 PMCID: PMC6721367 DOI: 10.3390/brainsci9080179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial near-infrared stimulation (tNIRS) has been proposed as a tool to modulate cortical excitability. However, the underlying mechanisms are not clear where the heating effects on the brain tissue needs investigation due to increased near-infrared (NIR) absorption by water and fat. Moreover, the risk of localized heating of tissues (including the skin) during optical stimulation of the brain tissue is a concern. The challenge in estimating localized tissue heating is due to the light interaction with the tissues' constituents, which is dependent on the combination ratio of the scattering and absorption properties of the constituent. Here, apart from tissue heating that can modulate the cortical excitability ("photothermal effects"); the other mechanism reported in the literature is the stimulation of the mitochondria in the cells which are active in the adenosine triphosphate (ATP) synthesis. In the mitochondrial respiratory chain, Complex IV, also known as the cytochrome c oxidase (CCO), is the unit four with three copper atoms. The absorption peaks of CCO are in the visible (420-450 nm and 600-700 nm) and the near-infrared (760-980 nm) spectral regions, which have been shown to be promising for low-level light therapy (LLLT), also known as "photobiomodulation". While much higher CCO absorption peaks in the visible spectrum can be used for the photobiomodulation of the skin, 810 nm has been proposed for the non-invasive brain stimulation (using tNIRS) due to the optical window in the NIR spectral region. In this article, we applied a computational approach to delineate the "photothermal effects" from the "photobiomodulation", i.e., to estimate the amount of light absorbed individually by each chromophore in the brain tissue (with constant scattering) and the related tissue heating. Photon migration simulations were performed for motor cortex tNIRS based on a prior work that used a 500 mW cm - 2 light source placed on the scalp. We simulated photon migration at 630 nm and 700 nm (red spectral region) and 810 nm (near-infrared spectral region). We found a temperature increase in the scalp below 0.25 °C and a minimal temperature increase in the gray matter less than 0.04 °C at 810 nm. Similar heating was found for 630 nm and 700 nm used for LLLT, so photothermal effects are postulated to be unlikely in the brain tissue.
Collapse
Affiliation(s)
- Mahasweta Bhattacharya
- Department of Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
Rejmstad P, Haj-Hosseini N, Åneman O, Wårdell K. Optical monitoring of cerebral microcirculation in neurointensive care. Med Biol Eng Comput 2017; 56:1201-1210. [PMID: 29218511 PMCID: PMC6013533 DOI: 10.1007/s11517-017-1725-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO2) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems’ potential for assessing the onset of secondary brain injury.
Collapse
Affiliation(s)
- Peter Rejmstad
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| | - Neda Haj-Hosseini
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Oscar Åneman
- Department of Neurosurgery, Linköping University Hospital, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Rejmstad P, Zsigmond P, Wårdell K. Oxygen saturation estimation in brain tissue using diffuse reflectance spectroscopy along stereotactic trajectories. OPTICS EXPRESS 2017; 25:8192-8201. [PMID: 28380934 DOI: 10.1364/oe.25.008192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) can be used to estimate oxygen saturation (SO2) of hemoglobin and blood fraction (fB) in brain tissue. The aim of the study was to investigate the SO2 and fB in different positions along deep brain stimulation (DBS) trajectories and in specific target regions using DRS and a novel algorithm. DRS measurements were done at 166 well-defined anatomical positions in relation to stereotactic DBS-implantation along 20 trajectories toward 4 DBS targets (STN, Vim, GPi and Zi). The measurements were dived into groups (gray, white and light gray matter) related to anatomical position, and DBS targets, before comparison and statistical analysis. The median SO2 in gray, white and light gray matter were 52%, 24% and 20%, respectively. Median fB in gray matter (3.9%) was different from values in white (1.0%, p < 0.05) and light gray (0.9%, p < 0.001) matter. No significant difference in median SO2 and fB was found between DBS target regions. The novel algorithm allows for quick and reliable estimation of SO2 and fB in human brain tissue.
Collapse
|
7
|
Rejmstad P, Johansson JD, Haj-Hosseini N, Wårdell K. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy. JOURNAL OF BIOPHOTONICS 2017; 10:446-455. [PMID: 27094015 DOI: 10.1002/jbio.201500334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 05/09/2023]
Abstract
Continuous measurement of local brain oxygen saturation (SO2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO2 ), which is closely related to SO2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO2 for different blood concentrations. The P3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile.
Collapse
Affiliation(s)
- Peter Rejmstad
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Johannes D Johansson
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Neda Haj-Hosseini
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 581 83, LINKÖPING, Sweden
| |
Collapse
|
8
|
Xie Y, Harsan LA, Bienert T, Kirch RD, von Elverfeldt D, Hofmann UG. Qualitative and quantitative evaluation of in vivo SD-OCT measurement of rat brain. BIOMEDICAL OPTICS EXPRESS 2017; 8:593-607. [PMID: 28270970 PMCID: PMC5330575 DOI: 10.1364/boe.8.000593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 06/01/2023]
Abstract
OCT has been demonstrated as an efficient imaging modality in various biomedical and clinical applications. However, there is a missing link with respect to the source of contrast between OCT and other modern imaging modalities, no quantitative comparison has been demonstrated between them, yet. We evaluated, to our knowledge, for the first time in vivo OCT measurement of rat brain with our previously proposed forward imaging method by both qualitatively and quantitatively correlating OCT with the corresponding T1-weighted and T2-weighted magnetic resonance images, fiber density map (FDM), and two types of histology staining (cresyl violet and acetylcholinesterase AchE), respectively. Brain anatomical structures were identified and compared across OCT, MRI and histology imaging modalities. Noticeable resemblances corresponding to certain anatomical structures were found between OCT and other image profiles. Correlation was quantitatively assessed by estimating correlation coefficient (R) and mutual information (MI). Results show that the 1-D OCT measurements in regards to the intensity profile and estimated attenuation factor, do not have profound linear correlation with the other image modalities suggested from correlation coefficient estimation. However, findings in mutual information analysis demonstrate that there are markedly high MI values in OCT-MRI signals.
Collapse
Affiliation(s)
- Yijing Xie
- Section of Neuroelectronic Systems, Department of General Neurosurgery, Medical Center University of Freiburg, Engesserstraβe 4, 79108 Freiburg,
Germany
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT London,
UK
| | - Laura-Adela Harsan
- Department of Diagnostic Radiology, Medical Center University of Freiburg, Hugstetter Straβe 55, 79106 Freiburg,
Germany
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (IMIS), UMR 7357, University of Strasbourg, 4 Rue Kirschleger, 67000 Strasbourg,
France
- Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, 1, Avenue Molière, 67098 Strasbourg Cedex,
France
| | - Thomas Bienert
- Department of Diagnostic Radiology, Medical Center University of Freiburg, Hugstetter Straβe 55, 79106 Freiburg,
Germany
| | - Robert D. Kirch
- Section of Neuroelectronic Systems, Department of General Neurosurgery, Medical Center University of Freiburg, Engesserstraβe 4, 79108 Freiburg,
Germany
| | - Dominik von Elverfeldt
- Department of Diagnostic Radiology, Medical Center University of Freiburg, Hugstetter Straβe 55, 79106 Freiburg,
Germany
| | - Ulrich G. Hofmann
- Section of Neuroelectronic Systems, Department of General Neurosurgery, Medical Center University of Freiburg, Engesserstraβe 4, 79108 Freiburg,
Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg and University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg,
France
| |
Collapse
|
9
|
Wårdell K, Hemm-Ode S, Rejmstad P, Zsigmond P. High-Resolution Laser Doppler Measurements of Microcirculation in the Deep Brain Structures: A Method for Potential Vessel Tracking. Stereotact Funct Neurosurg 2016; 94:1-9. [PMID: 26795207 DOI: 10.1159/000442894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Laser Doppler flowmetry (LDF) can be used to measure cerebral microcirculation in relation to stereotactic deep brain stimulation (DBS) implantations. OBJECTIVE To investigate the microcirculation and total light intensity (TLI) corresponding to tissue grayness in DBS target regions with high-resolution LDF recordings, and to define a resolution which enables detection of small vessels. METHODS Stereotactic LDF measurements were made prior to DBS implantation with 0.5-mm steps in the vicinity to 4 deep brain targets (STN, GPi, Vim, Zi) along 20 trajectories. The Mann-Whitney U test was used to compare the microcirculation and TLI between targets, and the measurement resolution (0.5 vs. 1 mm). The numbers of high blood flow spots along the trajectories were calculated. RESULTS There was a significant difference (p < 0.05) in microcirculation between the targets. High blood flow spots were present at 15 out of 510 positions, 7 along Vim and GPi trajectories, respectively. There was no statistical difference between resolutions even though both local blood flow and TLI peaks could appear at 0.5-mm steps. CONCLUSIONS LDF can be used for online tracking of critical regions presenting blood flow and TLI peaks, possibly relating to vessel structures and thin laminas along stereotactic trajectories.
Collapse
Affiliation(s)
- Karin Wårdell
- Department of Biomedical Engineering, Linkx00F6;ping University, Linkx00F6;ping, Sweden
| | | | | | | |
Collapse
|