1
|
Baptista D, Teixeira L, van Blitterswijk C, Giselbrecht S, Truckenmüller R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol 2019; 37:838-854. [PMID: 30885388 DOI: 10.1016/j.tibtech.2019.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
In biological systems, form and function are inherently correlated. Despite this strong interdependence, the biological effect of curvature has been largely overlooked or underestimated, and consequently it has rarely been considered in the design of new cell-material interfaces. This review summarizes current understanding of the interplay between the curvature of a cell substrate and the related morphological and functional cellular response. In this context, we also discuss what is currently known about how, in the process of such a response, cells recognize curvature and accordingly reshape their membrane. Beyond this, we highlight state-of-the-art microtechnologies for engineering curved biomaterials at cell-scale, and describe aspects that impair or improve readouts of the pure effect of curvature on cells.
Collapse
Affiliation(s)
- Danielle Baptista
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Liliana Teixeira
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; These authors contributed equally to this work.
| |
Collapse
|
2
|
Constant C, Bergano A, Sugaya K, Dogariu A. Guiding cellular activity with polarized light. JOURNAL OF BIOPHOTONICS 2018; 11:e201600326. [PMID: 28671765 DOI: 10.1002/jbio.201600326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Actin, cytoskeleton protein forming microfilaments, play a crucial role in cellular motility. Here we show that exposure to very low levels of polarized light guide their orientation in-vivo within the live cell. Using a simple model to describe the role of actin-filament orientation in directional cellular motion, we demonstrate that the actin polymerization/depolymerization mechanism develops primarily along this direction and, under certain conditions, can lead to guidance of the cell movement. Our results also show a dose dependent increase in actin activity in direct correspondence to the level of laser irradiance. We found that total expression of Tau protein, which stabilize microtubules, was decreased by the irradiance, indicating that exposure to the light may change the activity of kinase, leading to increased cell activity.
Collapse
Affiliation(s)
- Colin Constant
- CREOL, The College of Optics and Photonics, University of Central Florida, 4304 Scorpius., Orlando, Florida, 32816, USA
| | - Andrea Bergano
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida, 32827, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd., Orlando, Florida, 32827, USA
| | - Aristide Dogariu
- CREOL, The College of Optics and Photonics, University of Central Florida, 4304 Scorpius., Orlando, Florida, 32816, USA
| |
Collapse
|
3
|
Lee SJ, Yang S. Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells. Biotechnol J 2017; 12. [PMID: 28731631 DOI: 10.1002/biot.201700360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sang Joo Lee
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| | - Shengyuan Yang
- Department of Mechanical and Aerospace EngineeringFlorida Institute of Technology150 West University BoulevardMelbourneFL32901USA
| |
Collapse
|
4
|
Soscia DA, Sequeira SJ, Schramm RA, Jayarathanam K, Cantara SI, Larsen M, Castracane J. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters. Biomaterials 2013; 34:6773-84. [PMID: 23777914 PMCID: PMC3755621 DOI: 10.1016/j.biomaterials.2013.05.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
There is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells. These micropatterned scaffolds provide a method for engineering increased surface area and were additionally investigated for their ability to promote cell polarization. Two immortalized salivary gland cell lines (SIMS, ductal and Par-C10, acinar) were cultured on fibrous crater arrays of various radii and compared with those grown on flat PLGA nanofiber substrates, and in 3-D Matrigel. It was found that by increasing crater curvature, the average height of the cell monolayer of SIMS cells and to a lesser extent, Par-C10 cells, increased to a maximum similar to that seen in cells grown in 3-D Matrigel. Increasing curvature resulted in higher expression levels of tight junction protein occludin in both cell lines, but did not induce a change in expression of adherens junction protein E-cadherin. Additionally, increasing curvature promoted polarity of both cell lines, as a greater apical localization of occludin was seen in cells on substrates of higher curvature. Lastly, substrate curvature increased expression of the water channel protein aquaporin-5 (Aqp-5) in Par-C10 cells, suggesting that curved nanofiber substrates are more suitable for promoting differentiation of salivary gland cells.
Collapse
Affiliation(s)
- David A. Soscia
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Sharon J. Sequeira
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - Robert A. Schramm
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Kavitha Jayarathanam
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| | - Shraddha I. Cantara
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - Melinda Larsen
- Dept. of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Life Sciences Bldg., Albany, NY 12222, USA
| | - James Castracane
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|