1
|
Wong TH, Morton CA, Collier N, Haylett A, Ibbotson S, McKenna KE, Mallipeddi R, Moseley H, Seukeran DC, Rhodes LE, Ward KA, Mohd Mustapa MF, Exton LS. British Association of Dermatologists and British Photodermatology Group guidelines for topical photodynamic therapy 2018. Br J Dermatol 2018; 180:730-739. [PMID: 30506819 DOI: 10.1111/bjd.17309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Affiliation(s)
- T H Wong
- Stirling Community Hospital, Stirling, FK8 2AU, U.K
| | - C A Morton
- Stirling Community Hospital, Stirling, FK8 2AU, U.K
| | - N Collier
- Photobiology Unit, Dermatology Centre, University of Manchester and Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - A Haylett
- Photobiology Unit, Dermatology Centre, University of Manchester and Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - S Ibbotson
- Photobiology Unit, Department of Dermatology, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, U.K
| | - K E McKenna
- Department of Dermatology, Belfast City Hospital, Belfast, BT9 7AB, U.K
| | - R Mallipeddi
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, U.K
| | - H Moseley
- Photobiology Unit, Department of Dermatology, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, U.K
| | - D C Seukeran
- The James Cook University Hospital, Middleborough, TS4 3BW, U.K
| | - L E Rhodes
- Photobiology Unit, Dermatology Centre, University of Manchester and Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - K A Ward
- Cannock Chase Hospital, Cannock, WS11 5XY, U.K
| | - M F Mohd Mustapa
- British Association of Dermatologists, Willan House, 4 Fitzroy Square, London, W1T 5HQ, U.K
| | - L S Exton
- British Association of Dermatologists, Willan House, 4 Fitzroy Square, London, W1T 5HQ, U.K
| |
Collapse
|
2
|
Romano RA, Pratavieira S, Silva APD, Kurachi C, Guimarães FEG. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation. JOURNAL OF BIOPHOTONICS 2017; 10:1538-1546. [PMID: 28464559 DOI: 10.1002/jbio.201600309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI.
Collapse
Affiliation(s)
- Renan A Romano
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Ana P da Silva
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| | - Francisco E G Guimarães
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Huang Y, Lui H, Zhao J, Wu Z, Zeng H. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring. Am J Cancer Res 2017; 7:513-522. [PMID: 28255346 PMCID: PMC5327629 DOI: 10.7150/thno.17596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.
Collapse
|
4
|
Krafft C. Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. JOURNAL OF BIOPHOTONICS 2016; 9:1362-1375. [PMID: 27943650 DOI: 10.1002/jbio.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This contribution covers recent original research papers in the biophotonics field. The content is organized into main techniques such as multiphoton microscopy, Raman spectroscopy, infrared spectroscopy, optical coherence tomography and photoacoustic tomography, and their applications in the context of fluid, cell, tissue and skin diagnostics. Special attention is paid to vascular and blood flow diagnostics, photothermal and photodynamic therapy, tissue therapy, cell characterization, and biosensors for biomarker detection.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
5
|
Rego Filho FDAMG, Caldas RAA, Kurachi C, Bagnato VS, de Araujo MT. Possibility for the Conjugated Use of Photodynamic Therapy and Electrosurgical Devices. PLoS One 2015; 10:e0136194. [PMID: 26284935 PMCID: PMC4540322 DOI: 10.1371/journal.pone.0136194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
Because tissue optics limits the treated volume during anti-tumor Photodynamic Therapy (PDT), its conjugation with prior tissue debulking has been suggested clinically. In this context, the conjugation of radiofrequency ablation and PDT has already been demonstrated. However, the basic principles that enable the success of these protocols have not been discussed. This proof-of-principle study analyzes the possibility of conjugating electrosurgery (ES) and PDT, analyzing different sequences of photosensitizer (PS) administration in an animal model. The animals were distributed over five groups: ES, PS+Light, PS+ES, ES+PS+Light and PS+ES+Light. The PS Photogem was administered systemically. An electrosurgical unit (480 kHz) was used to remove a portion of the liver, leaving a plane surface for PDT illumination (630 nm, 150 J/cm²). Fluorescence was collected during the stages of the experiment to monitor the PS accumulation. After 30 hours, histological processing was performed. The fluorescence spectra revealed strong Photogem emission in both administration sequences (ES+PS; PS+ES), and little PS bleach after ES was observed. The maximum necrosis depth was observed for the PS+ES+Light group-(716 ± 75) μm-higher than its respective control group (160 ± 28) μm, proving successful conjugation. Histological features from ES and PDT on both conjugation sequences were observed. Pre-photosensitized tissue presented decreased ES-related thermal damage. A simple physical hypothesis, based on the Joule effect and the tissue electrical conductivity, was proposed to support these findings. In conclusion, the results successfully demonstrated the possibility of conjugating ES and PDT in a single protocol.
Collapse
Affiliation(s)
| | | | - Cristina Kurachi
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|