1
|
Iványi GT, Nemes B, Gróf I, Fekete T, Kubacková J, Tomori Z, Bánó G, Vizsnyiczai G, Kelemen L. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401115. [PMID: 38814436 DOI: 10.1002/adma.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.
Collapse
Affiliation(s)
- Gergely T Iványi
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720, Hungary
| | - Botond Nemes
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ilona Gróf
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Tamás Fekete
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Jana Kubacková
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Zoltán Tomori
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, Košice, 04154, Slovakia
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged, 6720, Hungary
| | - Lóránd Kelemen
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
2
|
Vasse GF, Buzón P, Melgert BN, Roos WH, van Rijn P. Single Cell Reactomics: Real-Time Single-Cell Activation Kinetics of Optically Trapped Macrophages. SMALL METHODS 2021; 5:e2000849. [PMID: 34927846 DOI: 10.1002/smtd.202000849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/27/2021] [Indexed: 05/29/2023]
Abstract
Macrophages are well known for their role in immune responses and tissue homeostasis. They can polarize towards various phenotypes in response to biophysical and biochemical stimuli. However, little is known about the early kinetics of macrophage polarization in response to single biophysical or biochemical stimuli. Our approach, combining optical tweezers, confocal fluorescence microscopy, and microfluidics, allows us to isolate single macrophages and follow their immediate responses to a biochemical stimulus in real-time. This strategy enables live-cell imaging at high spatiotemporal resolution and omits surface adhesion and cell-cell contact as biophysical stimuli. The approach is validated by successfully following the early phase of an oxidative stress response of macrophages upon phorbol 12-myristate 13-acetate (PMA) stimulation, allowing detailed analysis of the initial macrophage response upon a single biochemical stimulus within seconds after its application, thereby eliminating delay times introduced by other techniques during the stimulation procedure. Hence, an unprecedented view of the early kinetics of macrophage polarization is provided.
Collapse
Affiliation(s)
- Gwenda F Vasse
- Biomedical Engineering Department-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Pedro Buzón
- Moleculaire Biofysica, Zernike Instituut, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Patrick van Rijn
- Biomedical Engineering Department-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Kumar S, Gunaseelan M, Vaippully R, Kumar A, Ajith M, Vaidya G, Dutta S, Roy B. Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers. BIOMEDICAL OPTICS EXPRESS 2020; 11:3555-3566. [PMID: 33014551 PMCID: PMC7510922 DOI: 10.1364/boe.392901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 05/28/2023]
Abstract
3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping a perfectly spherical object at two locations and subsequent pitch rotation hasn't yet been demonstrated to be possible. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 μm which is smaller than those reported using acousto-fluidic techniques.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M. Gunaseelan
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Amrendra Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mithun Ajith
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gaurav Vaidya
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Soumya Dutta
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Vizsnyiczai G, Búzás A, Lakshmanrao Aekbote B, Fekete T, Grexa I, Ormos P, Kelemen L. Multiview microscopy of single cells through microstructure-based indirect optical manipulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:945-962. [PMID: 32133231 PMCID: PMC7041459 DOI: 10.1364/boe.379233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - András Búzás
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Badri Lakshmanrao Aekbote
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- School of Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - István Grexa
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Pál Ormos
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
5
|
Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Methods Enzymol 2016; 582:85-119. [PMID: 28062046 DOI: 10.1016/bs.mie.2016.09.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that has found widespread application in biology. In this combined approach, the spatial (~nm) and temporal (~ms) resolution, as well as the force scale (~pN) accessible to optical tweezers is complemented with the power of fluorescence microscopy. Thereby, it provides information on the local presence, identity, spatial dynamics, and conformational dynamics of single biomolecules. Together, these techniques allow comprehensive studies of, among others, molecular motors, protein-protein and protein-DNA interactions, biomolecular conformational changes, and mechanotransduction pathways. In this chapter, recent applications of fluorescence microscopy in combination with optical trapping are discussed. After an introductory section, we provide a description of instrumentation together with the current capabilities and limitations of the approaches. Next we summarize recent studies that applied this combination of techniques in biological systems and highlight some representative biological assays to mark the exquisite opportunities that optical tweezers combined with fluorescence microscopy provide.
Collapse
Affiliation(s)
| | | | - W H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - G J L Wuite
- Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Krafft C. Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. JOURNAL OF BIOPHOTONICS 2016; 9:1362-1375. [PMID: 27943650 DOI: 10.1002/jbio.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This contribution covers recent original research papers in the biophotonics field. The content is organized into main techniques such as multiphoton microscopy, Raman spectroscopy, infrared spectroscopy, optical coherence tomography and photoacoustic tomography, and their applications in the context of fluid, cell, tissue and skin diagnostics. Special attention is paid to vascular and blood flow diagnostics, photothermal and photodynamic therapy, tissue therapy, cell characterization, and biosensors for biomarker detection.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
7
|
Aekbote BL, Fekete T, Jacak J, Vizsnyiczai G, Ormos P, Kelemen L. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. BIOMEDICAL OPTICS EXPRESS 2016; 7:45-56. [PMID: 26819816 PMCID: PMC4722909 DOI: 10.1364/boe.7.000045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 05/24/2023]
Abstract
We introduce a method that combines two-photon polymerization (TPP) and surface functionalization to enable the indirect optical manipulation of live cells. TPP-made 3D microstructures were coated specifically with a multilayer of the protein streptavidin and non-specifically with IgG antibody using polyethylene glycol diamine as a linker molecule. Protein density on their surfaces was quantified for various coating methods. The streptavidin-coated structures were shown to attach to biotinated cells reproducibly. We performed basic indirect optical micromanipulation tasks with attached structure-cell couples using complex structures and a multi-focus optical trap. The use of such extended manipulators for indirect optical trapping ensures to keep a safe distance between the trapping beams and the sensitive cell and enables their 6 degrees of freedom actuation.
Collapse
Affiliation(s)
- Badri L. Aekbote
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Tamás Fekete
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Jaroslaw Jacak
- University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria
| | - Gaszton Vizsnyiczai
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Pál Ormos
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Lóránd Kelemen
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|