1
|
Xu S, Wu XH, Wu L, Zhai JM, Li SJ, Kou Y, Peng W, Zheng QN, Tian JH, Zhang YJ, Li JF. Systematic Optimization of Universal Real-Time Hypersensitive Fast Detection Method for HBsAg in Serum Based on SERS. Anal Chem 2024; 96:6784-6793. [PMID: 38632870 DOI: 10.1021/acs.analchem.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.
Collapse
Affiliation(s)
- Shanshan Xu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xiao-Hang Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lin Wu
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jia-Min Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Shi-Jun Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yichuan Kou
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Wei Peng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Qing-Na Zheng
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- College of Materials, College of Energy, College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Post AL, Faber DJ, Sterenborg HJCM, van Leeuwen TG. Experimental validation of a recently developed model for single-fiber reflectance spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200341R. [PMID: 33641270 PMCID: PMC7913601 DOI: 10.1117/1.jbo.26.2.025004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 05/22/2023]
Abstract
SIGNIFICANCE We recently developed a model for the reflectance measured with (multi-diameter) single-fiber reflectance (SFR) spectroscopy as a function of the reduced scattering coefficient μs', the absorption coefficient μa, and the phase function parameter psb. We validated this model with simulations. AIM We validate our model experimentally. To prevent overfitting, we investigate the wavelength-dependence of psb and propose a parametrization with only three parameters. We also investigate whether this parametrization enables measurements with a single fiber, as opposed to multiple fibers used in multi-diameter SFR (MDSFR). APPROACH We validate our model on 16 phantoms with two concentrations of Intralipid-20% (μs'=13 and 21 cm - 1 at 500 nm) and eight concentrations of Evans Blue (μa = 1 to 20 cm - 1 at 605 nm). We parametrize psb as 10 - 5 · ( p1 ( λ / 650 ) + p2(λ/650)2 + p3(λ/650)3 ) . RESULTS Average errors were 7% for μs', 11% for μa, and 16% with the parametrization of psb; and 7%, 17%, and 16%, respectively, without. The parametrization of psb improved the fit speed 25 times (94 s to <4 s). Average errors for only one fiber were 50%, 33%, and 186%, respectively. CONCLUSIONS Our recently developed model provides accurate results for MDSFR measurements but not for a single fiber. The psb parametrization prevents overfitting and speeds up the fit.
Collapse
Affiliation(s)
- Anouk L. Post
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Address all correspondence to Anouk L. Post,
| | - Dirk J. Faber
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- University of Amsterdam, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Post AL, Faber DJ, Sterenborg HJCM, van Leeuwen TG. Subdiffuse scattering and absorption model for single fiber reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6620-6633. [PMID: 33282512 PMCID: PMC7687961 DOI: 10.1364/boe.402466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 05/05/2023]
Abstract
Single fiber reflectance (SFR) spectroscopy is a technique that is sensitive to small-scale changes in tissue. An additional benefit is that SFR measurements can be performed through endoscopes or biopsy needles. In SFR spectroscopy, a single fiber emits and collects light. Tissue optical properties can be extracted from SFR spectra and related to the disease state of tissue. However, the model currently used to extract optical properties was derived for tissues with modified Henyey-Greenstein phase functions only and is inadequate for other tissue phase functions. Here, we will present a model for SFR spectroscopy that provides accurate results for a large range of tissue phase functions, reduced scattering coefficients, and absorption coefficients. Our model predicts the reflectance with a median error of 5.6% compared to 19.3% for the currently used model. For two simulated tissue spectra, our model fit provides accurate results.
Collapse
Affiliation(s)
- Anouk L. Post
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- The Netherlands Cancer Institute, Department of Surgery, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ton G. van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Askoura ML, Vaudelle F, L'Huillier JP. Multispectral measurement of scattering-angular light distribution in apple skin and flesh samples. APPLIED OPTICS 2016; 55:9217-9225. [PMID: 27857310 DOI: 10.1364/ao.55.009217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Knowledge of the optical properties of apple tissues such as skin and flesh is essential to better understand the light-tissue interaction process and to apply optical methods for apple quality inspection. This work aimed at estimating the anisotropy factor of thin skin and flesh samples extracted from three apple cultivars. The scattering-angular light distribution in each tissue sample was measured at four wavelengths (λ=633, 763, 784, and 852 nm), by means of a goniometer setup. Based on the recorded angular intensity I(θ,λ), the effective anisotropy factor geff of each tissue type was first estimated using the mean statistics applied to the random variable cos θ. Next, the measured data were fitted with three predefined and modified phase functions-Henyey-Greenstein (pMHG), Gegenbauer kernel (pMGK), and Mie (pMie)-in order to retrieve the corresponding anisotropy factors gMHG, gMGK, and gMMie. Typically, the anisotropy factors of skin and flesh amount to 0.6-0.8 in the above-mentioned wavelength range.
Collapse
|
5
|
Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model. Lasers Med Sci 2016; 31:1041-50. [PMID: 27147075 DOI: 10.1007/s10103-016-1948-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 02/05/2023]
Abstract
The investigation of laser-tissue interaction is crucial for diagnostics and therapeutics. In particular, the estimation of tissue optical properties allows developing predictive models for defining organ-specific treatment planning tool. With regard to laser ablation (LA), optical properties are among the main responsible for the therapy efficacy, as they globally affect the heating process of the tissue, due to its capability to absorb and scatter laser energy. The recent introduction of LA for pancreatic tumor treatment in clinical studies has fostered the need to assess the laser-pancreas interaction and hence to find its optical properties in the wavelength of interest. This work aims at estimating optical properties (i.e., absorption, μ a , scattering, μ s , anisotropy, g, coefficients) of neuroendocrine pancreas tumor at 1064 nm. Experiments were performed using two popular sample storage methods; the optical properties of frozen and paraffin-embedded neuroendocrine tumor of the pancreas are estimated by employing a double-integrating-sphere system and inverse Monte Carlo algorithm. Results show that paraffin-embedded tissue is characterized by absorption and scattering coefficients significantly higher than frozen samples (μ a of 56 cm(-1) vs 0.9 cm(-1), μ s of 539 cm(-1) vs 130 cm(-1), respectively). Simulations show that such different optical features strongly influence the pancreas temperature distribution during LA. This result may affect the prediction of therapeutic outcome. Therefore, the choice of the appropriate preparation technique of samples for optical property estimation is crucial for the performances of the mathematical models which predict LA thermal outcome on the tissue and lead the selection of optimal LA settings.
Collapse
|
6
|
Saccomandi P, Schena E, Massaroni C, Di Matteo FM, Silvestri S. Goniometric measurement for the estimation of anisotropy coefficient of human and animal pancreas. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:1283-1286. [PMID: 26736502 DOI: 10.1109/embc.2015.7318602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Estimation of optical properties of biologic tissues is determinant for laser dosimetry in medical applications. Tissues highly absorb and scatter the light in near infrared spectrum, where the laser provides therapeutic effects. Novel frontiers of clinical practice, e.g., the employment of laser light for the treatment of pancreatic cancer, require information about pancreas-laser interaction, which are crucial for therapy management. The property of biological tissues to scatter the light traveling through is described by the anisotropy coefficient (g). The relationship between g and the angular distribution of the scattered light is described by Henyey-Greenstein phase function. The measurement of angular distribution of scattered light is performed by the goniometric technique. This paper describes the estimation of g of ex vivo pancreas at 1064 nm, performed by a goniometric-based system, where a photodetector measures intensities of scattered light at fixed angles between -120° and 120°. A two-term Henyey-Greenstein phase function has been employed to estimate anisotropy coefficient for forward (gfs) and backward scattering (gbs). Experimental trails were performed to assess the repeatability of measurement system: percentage value of standard deviation is generally lower than 8% for angles higher (lower) than 13° (13°). Measurements were performed for the first time on healthy swine pancreas, aiming to investigate the influence of coagulation temperature: gfs decreases from 0.94 (at 25 °C) to 0.93 (at 80 °C). Afterwards, the same set up has been employed for the estimation of g of human pancreas affected by neuroendocrine tumor, which presented an estimated values for gfs of 0.89.
Collapse
|