1
|
Talone B, Bazzarelli M, Schirato A, Dello Vicario F, Viola D, Jacchetti E, Bregonzio M, Raimondi MT, Cerullo G, Polli D. Phototoxicity induced in living HeLa cells by focused femtosecond laser pulses: a data-driven approach. BIOMEDICAL OPTICS EXPRESS 2021; 12:7886-7905. [PMID: 35003873 PMCID: PMC8713694 DOI: 10.1364/boe.441225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Nonlinear optical microscopy is a powerful label-free imaging technology, providing biochemical and structural information in living cells and tissues. A possible drawback is photodamage induced by high-power ultrashort laser pulses. Here we present an experimental study on thousands of HeLa cells, to characterize the damage induced by focused femtosecond near-infrared laser pulses as a function of laser power, scanning speed and exposure time, in both wide-field and point-scanning illumination configurations. Our data-driven approach offers an interpretation of the underlying damage mechanisms and provides a predictive model that estimates its probability and extension and a safety limit for the working conditions in nonlinear optical microscopy. In particular, we demonstrate that cells can withstand high temperatures for a short amount of time, while they die if exposed for longer times to mild temperatures. It is thus better to illuminate the samples with high irradiances: thanks to the nonlinear imaging mechanism, much stronger signals will be generated, enabling fast imaging and thus avoiding sample photodamage.
Collapse
Affiliation(s)
- B. Talone
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | | | - A. Schirato
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto Italiano di Tecnologia, via Morego 30, I- 16163, Genoa, Italy
| | | | - D. Viola
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - E. Jacchetti
- Department of Chemistry, Materials and Chemical Engineering ’G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - M. Bregonzio
- 3rdPlace SRL, Foro Bonaparte 71, 20121 Milan, Italy
| | - M. T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering ’G. Natta’, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - G. Cerullo
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - D. Polli
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|
2
|
Malak M, Grantham J, Ericson MB. Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32388932 PMCID: PMC7210787 DOI: 10.1117/1.jbo.25.7.071205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Research in tissue engineering and in vitro organ formation has recently intensified. To assess tissue morphology, the method of choice today is restricted primarily to histology. Thus novel tools are required to enable noninvasive, and preferably label-free, three-dimensional imaging that is more compatible with futuristic organ-on-a-chip models. AIM We investigate the potential for using multiphoton microscopy (MPM) as a label-free in vitro approach to monitor calcium-induced epidermal differentiation. APPROACH In vitro epidermis was cultured at the air-liquid interface in varying calcium concentrations. Morphology and tissue architecture were investigated using MPM based on visualizing cellular autofluorescence. RESULTS Distinct morphologies corresponding to epidermal differentiation were observed. In addition, Ca2 + -induced effects could be distinguished based on the architectural differences in stratification in the tissue cultures. CONCLUSIONS Our study shows that MPM based on cellular autofluorescence enables visualization of Ca2 + -induced differentiation in epidermal skin models in vitro. The technique has potential to be further adapted as a noninvasive, label-free, and real-time tool to monitor tissue regeneration and organ formation in vitro.
Collapse
Affiliation(s)
- Monika Malak
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Julie Grantham
- University of Gothenburg, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Marica B. Ericson
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| |
Collapse
|
3
|
Cabirol A, Haase A. Automated quantification of synaptic boutons reveals their 3D distribution in the honey bee mushroom body. Sci Rep 2019; 9:19322. [PMID: 31852957 PMCID: PMC6920473 DOI: 10.1038/s41598-019-55974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023] Open
Abstract
Synaptic boutons are highly plastic structures undergoing experience-dependent changes in their number, volume, and shape. Their plasticity has been intensively studied in the insect mushroom bodies by manually counting the number of boutons in small regions of interest and extrapolating this number to the volume of the mushroom body neuropil. Here we extend this analysis to the synaptic bouton distribution within a larger subregion of the mushroom body olfactory neuropil of honey bees (Apis mellifera). This required the development of an automated method combining two-photon imaging with advanced image post-processing and multiple threshold segmentation. The method was first validated in subregions of the mushroom body olfactory and visual neuropils. Further analyses in the olfactory neuropil suggested that previous studies overestimated the number of synaptic boutons. As a reason for that, we identified boundaries effects in the small volume samples. The application of the automated analysis to larger volumes of the mushroom body olfactory neuropil revealed a corrected average density of synaptic boutons and, for the first time, their 3D spatial distribution. This distribution exhibited a considerable heterogeneity. This additional information on the synaptic bouton distribution provides the basis for future studies on brain development, symmetry, and plasticity.
Collapse
Affiliation(s)
- Amélie Cabirol
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy. .,Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
4
|
Krafft C. Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. JOURNAL OF BIOPHOTONICS 2016; 9:1362-1375. [PMID: 27943650 DOI: 10.1002/jbio.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This contribution covers recent original research papers in the biophotonics field. The content is organized into main techniques such as multiphoton microscopy, Raman spectroscopy, infrared spectroscopy, optical coherence tomography and photoacoustic tomography, and their applications in the context of fluid, cell, tissue and skin diagnostics. Special attention is paid to vascular and blood flow diagnostics, photothermal and photodynamic therapy, tissue therapy, cell characterization, and biosensors for biomarker detection.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|