1
|
Wang H, Chen Z, Li T, Xie H, Yin B, Wong SHD, Shi Y, Zhang AP. Optofluidic chip with directly printed polymer optical waveguide Mach-Zehnder interferometer sensors for label-free biodetection. BIOMEDICAL OPTICS EXPRESS 2024; 15:3240-3250. [PMID: 38855677 PMCID: PMC11161367 DOI: 10.1364/boe.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
Optofluidic devices hold great promise in biomedical diagnostics and testing because of their advantages of miniaturization, high sensitivity, high throughput, and high scalability. However, conventional silicon-based photonic chips suffer from complicated fabrication processes and less flexibility in functionalization, thus hindering their development of cost-effective biomedical diagnostic devices for daily tests and massive applications in responding to public health crises. In this paper, we present an optofluidic chip based on directly printed polymer optical waveguide Mach-Zehnder interferometer (MZI) sensors for label-free biomarker detection. With digital ultraviolet lithography technology, high-sensitivity asymmetric MZI microsensors based on a width-tailored optical waveguide are directly printed and vertically integrated with a microfluidic layer to make an optofluidic chip. Experimental results show that the sensitivity of the directly printed polymer optical waveguide MZI sensor is about 1695.95 nm/RIU. After being modified with capture molecules, i.e., goat anti-human immunoglobulin G (IgG), the polymer optical waveguide MZI sensors can on-chip detect human IgG at the concentration level of 1.78 pM. Such a polymer optical waveguide-based optofluidic chip has the advantages of miniaturization, cost-effectiveness, high sensitivity, and ease in functionalization and thus has great potential in the development of daily available point-of-care diagnostic and testing devices.
Collapse
Affiliation(s)
- Han Wang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zhituo Chen
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Taige Li
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Huimin Xie
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yaocheng Shi
- Center for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - A. Ping Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Wang Y, Di S, Yu J, Wang L, Li Z. Recent advances of graphene-biomacromolecule nanocomposites in medical applications. J Mater Chem B 2023; 11:500-518. [PMID: 36541392 DOI: 10.1039/d2tb01962k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, graphene-based composites have received increasing attention due to their high biocompatibility, large specific surface area, high electrical conductivity and unique mechanical properties. The combination of biomacromolecules and graphene provides a promising route for the preparation of novel graphene-based nanocomposites. Novel graphene-based nanocomposites with unique functions could be applied to medicine, biology, biosensors, environmental science, energy storage and other fields. Graphene-biomacromolecule nanocomposites have excellent biocompatibility, outstanding biofunctionality and low cytotoxicity, and have more advantages and development prospects than other traditional graphene-based materials in biological and biomedical fields. In this work, we summarize the research on the covalent and non-covalent interactions between different biomacromolecules (peptides, DNA/RNA, proteins and enzymes) and graphene, as well as the synthesis methods of novel functionalized graphene-biomacromolecule composites in recent years. We mainly introduce the recent advances (last 5 years) of graphene-biomacromolecule nanocomposites in medical applications, such as medical detection and disease treatment. We hope that this review will help readers to understand the methods and mechanisms of biomolecules modifying the surface of graphene, as well as the synthesis and application of graphene-based nanocomposites, which will promote the future developments of graphene-biomolecule composites in biomedicine, tissue engineering, materials engineering, and so on.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Shuhan Di
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Jinhui Yu
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Li Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China.
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
3
|
Azam T, Bukhari SH, Liaqat U, Miran W. Emerging Methods in Biosensing of Immunoglobin G-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:676. [PMID: 36679468 PMCID: PMC9862834 DOI: 10.3390/s23020676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Human antibodies are produced due to the activation of immune system components upon exposure to an external agent or antigen. Human antibody G, or immunoglobin G (IgG), accounts for 75% of total serum antibody content. IgG controls several infections by eradicating disease-causing pathogens from the body through complementary interactions with toxins. Additionally, IgG is an important diagnostic tool for certain pathological conditions, such as autoimmune hepatitis, hepatitis B virus (HBV), chickenpox and MMR (measles, mumps, and rubella), and coronavirus-induced disease 19 (COVID-19). As an important biomarker, IgG has sparked interest in conducting research to produce robust, sensitive, selective, and economical biosensors for its detection. To date, researchers have used different strategies and explored various materials from macro- to nanoscale to be used in IgG biosensing. In this review, emerging biosensors for IgG detection have been reviewed along with their detection limits, especially electrochemical biosensors that, when coupled with nanomaterials, can help to achieve the characteristics of a reliable IgG biosensor. Furthermore, this review can assist scientists in developing strategies for future research not only for IgG biosensors but also for the development of other biosensing systems for diverse targets.
Collapse
Affiliation(s)
- Tehmina Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Hassan Bukhari
- College of Computational Sciences and Natural Sciences, Minerva University, San Francisco, CA 94103, USA
| | - Usman Liaqat
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Smart polymeric materials with dynamically tunable physico-chemical characteristics in response to changes of environmental stimuli, have received considerable attention in myriad fields. The diverse combination of their micro-/nano-structural and molecular designs creates promising and exciting opportunities for exploiting advanced smart polymeric materials. Engineering micro-/nano-structures into smart polymeric materials with elaborate molecular design enables intricate coordination between their structures and molecular-level response to cooperatively realize smart functions for practical applications. In this review, recent progresses of smart polymeric materials that combine micro-/nano-structures and molecular design to achieve designed advanced functions are highlighted. Smart hydrogels, gating membranes, gratings, milli-particles, micro-particles and microvalves are employed as typical examples to introduce their design and fabrication strategies. Meanwhile, the key roles of interplay between their micro-/nano-structures and responsive properties to realize the desired functions for their applications are emphasized. Finally, perspectives on the current challenges and opportunities of micro-/nano-structured smart polymeric materials for their future development are presented.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
5
|
Guo Z, Qin Y, Chen P, Hu J, Zhou Y, Zhao X, Liu Z, Fei Y, Jiang X, Wu X. Hyperboloid-Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000239. [PMID: 32510822 DOI: 10.1002/smll.202000239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Whispering gallery mode (WGM) microresonators have been used as optical sensors in fundamental research and practical applications. The majority of WGM sensors are passive resonators that require complex systems, thereby limiting their practicality. Active resonators enable the remote excitation and collection of WGM-modulated fluorescence spectra, without requiring complex systems, and can be used as alternatives to passive microresonators. This paper demonstrates an active microresonator, which is a microdisk laser in a hyperboloid-drum (HD) shape. The HD microdisk lasers are a combination of a rhodamine B-doped photoresist and a silica microdisk. These HD microdisk lasers can be utilized for the detection of label-free biomolecules. The biomolecule concentration can be as low as 1 ag mL-1 , whereas the theoretical detection limit of the biosensor for human IgG in phosphate buffer saline is 9 ag mL-1 (0.06 aM ). Additionally, the biosensors are able to detect biomolecules in an artificial serum, with a theoretical detection limit of 9 ag mL-1 (0.06 aM ). These results are approximately four orders of magnitude more sensitive than those for the typical active WGM biosensors. The proposed HD microdisk laser biosensors show enormous detection potential for biomarkers in protein secretions or body fluids.
Collapse
Affiliation(s)
- Zhihe Guo
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yingchun Qin
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Peizong Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Jinliang Hu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yi Zhou
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Xuyang Zhao
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Zhiran Liu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Yiyan Fei
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| | - Xiaoshun Jiang
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiang Wu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra Precision Optical Manufacturing, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Ma Y, Dong B, Lee C. Progress of infrared guided-wave nanophotonic sensors and devices. NANO CONVERGENCE 2020; 7:12. [PMID: 32239361 PMCID: PMC7113365 DOI: 10.1186/s40580-020-00222-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 06/01/2023]
Abstract
Nanophotonics, manipulating light-matter interactions at the nanoscale, is an appealing technology for diversified biochemical and physical sensing applications. Guided-wave nanophotonics paves the way to miniaturize the sensors and realize on-chip integration of various photonic components, so as to realize chip-scale sensing systems for the future realization of the Internet of Things which requires the deployment of numerous sensor nodes. Starting from the popular CMOS-compatible silicon nanophotonics in the infrared, many infrared guided-wave nanophotonic sensors have been developed, showing the advantages of high sensitivity, low limit of detection, low crosstalk, strong detection multiplexing capability, immunity to electromagnetic interference, small footprint and low cost. In this review, we provide an overview of the recent progress of research on infrared guided-wave nanophotonic sensors. The sensor configurations, sensing mechanisms, sensing performances, performance improvement strategies, and system integrations are described. Future development directions are also proposed to overcome current technological obstacles toward industrialization.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123 China
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore, 117456 Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608 Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123 China
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore, 117456 Singapore
| |
Collapse
|
7
|
Sun LP, Huang Y, Huang T, Yuan Z, Lin W, Sun Z, Yang M, Xiao P, Ma J, Wang W, Zhang Y, Liu Z, Guan BO. Optical Microfiber Reader for Enzyme-Linked Immunosorbent Assay. Anal Chem 2019; 91:14141-14148. [DOI: 10.1021/acs.analchem.9b04119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Zihao Yuan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Wenfu Lin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Zhen Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Mingjin Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Peng Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yi Zhang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
8
|
Experimental designs for optimizing the purification of immunoglobulin G by mixed-mode chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121719. [DOI: 10.1016/j.jchromb.2019.121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 11/22/2022]
|
9
|
Trimodal Waveguide Demonstration and Its Implementation as a High Order Mode Interferometer for Sensing Application. SENSORS 2019; 19:s19122821. [PMID: 31238583 PMCID: PMC6630700 DOI: 10.3390/s19122821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023]
Abstract
This work implements and demonstrates an interferometric transducer based on a trimodal optical waveguide concept. The readout signal is generated from the interference between the fundamental and second-order modes propagating on a straight polymer waveguide. Intuitively, the higher the mode order, the larger the fraction of power (evanescent field) propagating outside the waveguide core, hence the higher the sensitivity that can be achieved when interfering against the strongly confined fundamental mode. The device is fabricated using the polymer SU-8 over a SiO2 substrate and shows a free spectral range of 20.2 nm and signal visibility of 5.7 dB, reaching a sensitivity to temperature variations of 0.0586 dB/°C. The results indicate that the proposed interferometer is a promising candidate for highly sensitive, compact and low-cost photonic transducer for implementation in different types of sensing applications, among these, point-of-care.
Collapse
|
10
|
Luan E, Shoman H, Ratner DM, Cheung KC, Chrostowski L. Silicon Photonic Biosensors Using Label-Free Detection. SENSORS 2018; 18:s18103519. [PMID: 30340405 PMCID: PMC6210424 DOI: 10.3390/s18103519] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022]
Abstract
Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.
Collapse
Affiliation(s)
- Enxiao Luan
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Hossam Shoman
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Daniel M Ratner
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA 98195-5061, USA.
| | - Karen C Cheung
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Lukas Chrostowski
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Liang L, Jin L, Ran Y, Sun LP, Guan BO. Fiber Light-Coupled Optofluidic Waveguide (FLOW) Immunosensor for Highly Sensitive Detection of p53 Protein. Anal Chem 2018; 90:10851-10857. [PMID: 30141911 DOI: 10.1021/acs.analchem.8b02123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly sensitive detection of molecular tumor markers is essential for biomarker-based cancer diagnostics. In this work, we showcase the implementation of fiber light-coupled optofluidic waveguide (FLOW) immunosensor for the detection of p53 protein, a typical tumor marker. The FLOW consists of a liquid-core capillary and an accompanying optical fiber, which allows evanescent interaction between light and microfluidic sample. Molecular binding at internal surface of the capillary induces a response in wavelength shift of the transmission spectrum in the optical fiber. To enable highly sensitive molecular detection, the evanescent-wave interaction has been strengthened by enlarging shape factor R via fine geometry control. The proposed FLOW immunosensor works with flowing microfluid, which increases the surface molecular coverage and improves the detection limit. As a result, the FLOW immunosensor presents a log-linear response to the tumor protein at concentrations ranging from 10 fg/mL up to 10 ng/mL. In addition, the nonspecifically adsorbed molecules can be effectively removed by the fluid at an optimal flow rate, which benefits the accuracy of the measurement. Tested in serum samples, the FLOW successfully maintains its sensitivity and specificity on p53 protein, making it suitable for diagnostics applications.
Collapse
Affiliation(s)
- Lili Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China.,Department of Biomedical Engineering , Duke University , Durham , 27708 , United States
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
12
|
Ramirez JC, Schianti JN, Souto DEP, Kubota LT, Hernandez-Figueroa HE, Gabrielli LH. Dielectric barrier discharge plasma treatment of modified SU-8 for biosensing applications. BIOMEDICAL OPTICS EXPRESS 2018; 9:2168-2175. [PMID: 29760978 PMCID: PMC5946779 DOI: 10.1364/boe.9.002168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 05/31/2023]
Abstract
In this work we demonstrate the use of a dielectric barrier discharge plasma for the treatment of SU-8. The resulting hydrophilic surface displays a 5° contact angle and (0.40 ± 0.012) nm roughness. Using this technique we also present a proof of concept of IgG and prostate specific antigen biodetection on a thin layer of SU-8 over gold via surface plasmon resonance detection.
Collapse
Affiliation(s)
- Jhonattan C. Ramirez
- School of Electrical and Computer Engineering, University of Campinas, 13083-852 Campinas, SP,
Brazil
| | - Juliana N. Schianti
- School of Electrical and Computer Engineering, University of Campinas, 13083-852 Campinas, SP,
Brazil
| | - Denio E. P. Souto
- National Institute of Science and Technology of Bioanalytics, University of Campinas, 13083-970 Campinas, SP,
Brazil
| | - Lauro T. Kubota
- National Institute of Science and Technology of Bioanalytics, University of Campinas, 13083-970 Campinas, SP,
Brazil
| | | | - Lucas H. Gabrielli
- School of Electrical and Computer Engineering, University of Campinas, 13083-852 Campinas, SP,
Brazil
| |
Collapse
|