1
|
Bo Z, Han W, Zhao H, Liu H, Liang T, Li L, Peng T, Li Y, Gui C. Development of a sensitive LC-MS/MS method for the quantification of theranostic agent cypate in mouse plasma and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123809. [PMID: 37413828 DOI: 10.1016/j.jchromb.2023.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Cypate, a heptamethine cyanine dye, is a prototypic near-infrared (NIR) theranostic agent for optical imaging and photothermal therapy. In the present study, a selective, sensitive, and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of cypate in mouse plasma. The chromatographic separation was achieved using a short C18 column (2.1 mm × 50 mm, 5 μm) with a run time of 5 min. The MS was operated in multiple reaction monitoring (MRM) mode via positive electrospray ionization. The ion transitions for cypate and internal standard IR-820 were m/z 626.3 → 596.3 and m/z 827.4 → 330.2, respectively. The method was linear over a concentration range of 1.0-500 ng/mL. The within-run and between-run precision was less than 14.4% with accuracy in the range of -13.4% ∼ 9.8%. The validated method was successfully applied to a pharmacokinetic study of cypate in mice following intravenous administration.
Collapse
Affiliation(s)
- Zheyue Bo
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Wanjun Han
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Haoyue Zhao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Han Liu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Ting Liang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Lanjing Li
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Taotao Peng
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Ying Li
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
2
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
3
|
Wang X, Cao Q, Wu S, Bahrani Fard MR, Wang N, Cao J, Zhu W. Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency. Int J Nanomedicine 2022; 17:1285-1307. [PMID: 35345785 PMCID: PMC8957401 DOI: 10.2147/ijn.s346141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Transplantation of stem cells to remodel the trabecular meshwork (TM) has become a new option for restoring aqueous humor dynamics and intraocular pressure homeostasis in glaucoma. In this study, we aimed to design a nanoparticle to label induced pluripotent stem cell (iPSC)-derived TM and improve the delivery accuracy and in vivo tracking efficiency. Methods PLGA-SPIO-Cypate (PSC) NPs were designed with polylactic acid-glycolic acid (PLGA) polymers as the backbone, superparamagnetic iron oxide (SPIO) nanoparticles, and near-infrared (NIR) dye cypate. In vitro assessment of cytotoxicity, iron content after NPs labeling, and the dual-model monitor was performed on mouse iPSC-derived TM (miPSC-TM) cells, as well as immortalized and primary human TM cells. Cell function after labeling, the delivery accuracy, in vivo tracking efficiency, and its effect on lowering IOP were evaluated following miPSC-TM transplantation in mice. Results Initial in vitro experiments showed that a single-time nanoparticles incubation was sufficient to label iPSC-derived TM and was not related to any change in both cell viability and fate. Subsequent in vivo evaluation revealed that the use of this nanoparticle not only improves the delivery accuracy of the transplanted cells in live animals but also benefits the dual-model tracking in the long term. More importantly, the use of the magnet triggers a temporary enhancement in the effectiveness of cell-based therapy in alleviating the pathologies associated with glaucoma. Conclusion This study provided a promising approach for enhancing both the delivery and in vivo tracking efficiency of the transplanted cells, which facilitates the clinical translation of stem cell-based therapy for glaucoma.
Collapse
Affiliation(s)
- Xiangji Wang
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, People's Republic of China
| | - Shen Wu
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | | | - Ningli Wang
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | - Jie Cao
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wei Zhu
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Liu D, You M, Yang H, Ke H. Liposomal cyanine dyes with enhanced nonradiative transition for synergistic phototherapy of tumor. J Mater Chem B 2022; 10:3016-3022. [DOI: 10.1039/d2tb00176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic photosensitizers are of great interest in cancer diagnose and treatment such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). However, their poor aqueous solubility, inadequate photostability and...
Collapse
|
5
|
Mehta S, Kulkarni S, Nikam AN, Padya BS, Pandey A, Mutalik S. Liposomes as Versatile Platform for Cancer Theranostics: Therapy, Bio-imaging, and Toxicological Aspects. Curr Pharm Des 2021; 27:1977-1991. [PMID: 33719968 DOI: 10.2174/1381612827666210311142100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022]
Abstract
Liposomes are nano-sized formulations having the benefits of site-specificity, biocompatibility, and biodegradability, which make them useful for the therapy and diagnosis of major diseases like cancer. In this review, various synthetic strategies of liposomes and their biomedical application in special concern to cancer are discussed. In context to the biomedical application, this article gives a detailed insight into subcellular targeted therapy and several therapeutic modifications like immunotherapy, receptor-based therapy, phototherapy, and combination therapy. The review also describes the liposome-based imaging platforms and the toxicity associated with liposomes. Owing to a significant amount of benefits of this carrier system, several products have been approved to be launched in the market and several others have already been marketed for clinical use.
Collapse
Affiliation(s)
- Swapnil Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bharat S Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
6
|
Luo Z, An J, Shi W, Li C, Gao H. One step assembly of ginsenoside Rb1-based nanovehicles with fast cellular transport in photothermal-chemical combined cancer therapy. NANOTECHNOLOGY 2021; 32:195103. [PMID: 33524967 DOI: 10.1088/1361-6528/abe1f0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nowadays, the research of photothermal-chemical co-therapy provides new ideas for the treatment of cancer. However, the harsh photothermal temperature hinders the clinical development of photothermal therapy. To ensure low-temperature photothermal-chemical combined therapy, a safe and feasible drug delivery system is highly desirable. Herein, through one step co-precipitation method, ginsenoside Rb1-based nanovehicles composed of the hydrophobic drug doxorubicin, the photochemical reagent Cypate and the heat shock protein inhibitor gambogic acid was prepared, resulting from the amphiphilicity and membrane permeability of Rb1. Encouragingly, this platform exhibited excellent biocompatibility and rapid cellular uptake, both of which led to significant and irreversible death of breast cancer cells under the trigger of short-term near-infrared light.
Collapse
Affiliation(s)
- Zhong Luo
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenjie Shi
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Chaoqi Li
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| |
Collapse
|
7
|
Yanina IY, Navolokin NA, Bucharskaya AB, Мaslyakova GN, Tuchin VV. Skin and subcutaneous fat morphology alterations under the LED or laser treatment in rats in vivo. JOURNAL OF BIOPHOTONICS 2019; 12:e201900117. [PMID: 31454458 DOI: 10.1002/jbio.201900117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The main objective of this work is to quantify the impact of photodynamic/photothermal treatment by using visible LED and NIR laser irradiation through the skin of subcutaneous fat in vivo followed up by tissue sampling and histology. The optical method may provide reduction of regional or site-specific accumulations of abdominal or subcutaneous adipose tissue precisely and least-invasively by inducing cell apoptosis and controlled necrosis of fat tissue. As photodynamic/photothermal adipose tissue sensitizers Brilliant Green (BG) or Indocyanine Green (ICG) dyes were injected subcutaneously in rats. The CW LED device (625 nm) or CW diode laser (808 nm) were used as light sources, respectively. Biopsies of skin together with subcutaneous tissues were taken for histology. The combined action BG-staining and LED-irradiation (BG + LED) or ICG-staining and NIR-laser irradiation (ICG + NIR) causes pronounced signs of damage of adipose tissue characterized by a strong stretching, thinning, folding and undulating of cell membranes and appearance of necrotic areas. As a posttreatment after 14 days only connective tissue was observed at the site of necrotic areas. The data obtained are important for safe light treatment of site-specific fat accumulations, including cellulite. This work provides a basis for the development of fat lipolysis technologies and to move them to clinical applications. Schematics of animal experiment.
Collapse
Affiliation(s)
- Irina Y Yanina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Nikita A Navolokin
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Alla B Bucharskaya
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Galina N Мaslyakova
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
8
|
Shi H, Luo Q. Biophotonics in China. JOURNAL OF BIOPHOTONICS 2017; 10:1572-1579. [PMID: 29205900 DOI: 10.1002/jbio.201790012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Biophotonics is a highly interdisciplinary field where physicists, chemists, biologists, physicians and engineers work together to solve the problems appearing in biology and medicine. In China, the Biophotonics discipline is often referred to as Biomedical Photonics, under the first-level disciplines Biomedical Engineering or Optical Engineering, and was initiated in the late 1990s. Over the past 20 years, biophotonics research in China expanded extraordinarily and has reached the frontiers of the world-level sciences. This white paper introduces the research groups in the biophotonics field in China, and their representative contributions.
Collapse
Affiliation(s)
- Hua Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- MoE Key Laboratory of Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- MoE Key Laboratory of Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|