1
|
ISHIGAKI M. <i>In situ</i> Imaging of Living Organisms by Raman and Near-infrared Spectroscopies — A look into the Brilliance of Life through Molecular Spectroscopies —. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mika ISHIGAKI
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University
| |
Collapse
|
2
|
Immunomodulatory Activities of Ammodytes personatus Egg Lipid in RAW264.7 Cells. Molecules 2021; 26:molecules26196027. [PMID: 34641571 PMCID: PMC8512018 DOI: 10.3390/molecules26196027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
Ammodytes personatus, known as the Pacific sand lance, thrives in cold areas of the North Pacific. In this study, the total lipid was extracted from A. personatus eggs and the fatty acid composition was determined using gas chromatography (GC)-flame ionization detection (FID). The results showed that the extracted lipid contained high content of polyunsaturated fatty acids (PUFAs). The immunomodulatory activities of the A. personatus lipid were investigated using rodent macrophages. First, immune enhancement was analyzed, and the A. personatus lipid significantly and dose-dependently increased the NO production in RAW264.7 cells, and this lipid also regulated the transcription of immune-associated genes in RAW264.7 cells by activating the NF-κB and MAPK pathways. Additionally, flow cytometry revealed that this lipid stimulated phagocytosis. Conversely, the anti-inflammatory activity of the A. personatus lipid was also analyzed and the results showed significantly decreased NO production and gene expression in a dose-dependent manner in LPS-stimulated RAW264.7 cells. In addition, the A. personatus lipid suppressed the LPS-induced phosphorylation of proteins related to the NF-κB and MAPK pathways in LPS-stimulated RAW264.7 cells. Further, flow cytometry demonstrated the lipid-regulated anti-inflammatory activity via inhibition of CD86 expression. The results indicate that A. personatus egg lipid is a potential source of immunomodulation.
Collapse
|
3
|
Kovacs Z, Muncan J, Ohmido N, Bazar G, Tsenkova R. Water Spectral Patterns Reveals Similarities and Differences in Rice Germination and Induced Degenerated Callus Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:1832. [PMID: 34579366 PMCID: PMC8471901 DOI: 10.3390/plants10091832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
In vivo monitoring of rice (Oryza sativa L.) seed germination and seedling growth under general conditions in closed Petri dishes containing agar base medium at room temperature (temperature = 24.5 ± 1 °C, relative humidity = 76 ± 7% (average ± standard deviation)), and induced degenerated callus formation with plant growth regulator, were performed using short-wavelength near-infrared spectroscopy and aquaphotomics over A period of 26 days. The results of spectral analysis suggest changes in water absorbances due to the production of common metabolites, as well as increases in biomass and the sizes of the samples. Quantitative models built to predict the day of the development provided better accuracy for rice seedlings growth compared to callus formation. Eight common water bands were identified as presenting prominent changes in the absorbance pattern. The water matrix of only rice seedlings showed three developmental stages: firstly expressing a predominantly weakly hydrogen-bonded state, then a more strongly hydrogen-bonded state, and then, again, a weakly hydrogen-bonded state at the end. In rice callus induction and proliferation, no similar change in water absorbance pattern was observed. The presented findings indicate the potential of aquaphotomics for the in vivo detection of degeneration in cell development.
Collapse
Affiliation(s)
- Zoltan Kovacs
- Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, 1118 Budapest, Hungary
| | - Jelena Muncan
- Biomeasurement Technology Laboratory, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Hyogo, Japan;
| | - Nobuko Ohmido
- Department of Human Environmental Science, Graduate School of Human Development and Environment, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Hyogo, Japan;
| | - George Bazar
- ADEXGO Ltd., Lapostelki u. 13, 8230 Balatonfüred, Hungary;
| | - Roumiana Tsenkova
- Biomeasurement Technology Laboratory, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Hyogo, Japan;
| |
Collapse
|
4
|
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020; 25:E2948. [PMID: 32604876 PMCID: PMC7357077 DOI: 10.3390/molecules25122948] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| | | | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| |
Collapse
|
5
|
Ishigaki M, Yasui Y, Kajita M, Ozaki Y. Assessment of Embryonic Bioactivity through Changes in the Water Structure Using Near-Infrared Spectroscopy and Imaging. Anal Chem 2020; 92:8133-8141. [PMID: 32407102 DOI: 10.1021/acs.analchem.0c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We explored the influence of embryonic bioactivity on the water structure using near-infrared (NIR) spectroscopy and imaging. Four groups of Japanese medaka fish (Oryzias latipes) eggs were studied: (a) one group of eggs was activated by fertilization, and (b-d) three groups of eggs were not activated because embryogenesis was stopped or not started by (b) culturing under cold temperature, (c) instant freezing, or (d) lack of fertilization. The yolks of the activated eggs contained higher proportions of weakly hydrogen bonded water than those of nonactivated eggs. A possible factor responsible for the significant changes in the water structure was revealed to be a protein secondary structural change from an α-helix to a β-sheet in the activated eggs. NIR images of the activated eggs successfully visualized the water structural variation in the yolk with a higher proportion of weak hydrogen bonds due to the activation of embryonic development. The embryogenic activity could be assessed through the water hydrogen bond network, which is affected by newly generated proteins with different secondary structures.
Collapse
Affiliation(s)
- Mika Ishigaki
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.,Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yui Yasui
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Misato Kajita
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
6
|
Lipid Droplet Composition Varies Based on Medaka Fish Eggs Development as Revealed by NIR-, MIR-, and Raman Imaging. Molecules 2020; 25:molecules25040817. [PMID: 32070018 PMCID: PMC7070833 DOI: 10.3390/molecules25040817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/23/2023] Open
Abstract
In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development. For non-destructive, macro-scale visualization of biochemical components of fish eggs, such as lipids proteins and water, near-infrared (NIR) imaging is the method of choice. Mid-infrared (MIR) and Raman spectroscopy imaging were used to provide details on chemical composition of LDs and other egg organelles. NIR imaging illustrated main compartments of the egg including membrane, LDs, yolk, relative protein, and lipid content in well-localized egg structures and their interactions with water molecules. In the yolk, a co-existence of lipids and proteins with carotenoids and carbohydrates was detected by Raman spectroscopy. Results showed a prominent decrease of unsaturated fatty acids, phospholipids, and triglycerides/cholesteryl esters content in the eggs due to the embryo development. An opposite trend of changes was observed by MIR spectroscopy for the glycogen, suggesting that consumption of lipids occurred with production of this carbohydrate. The comprehensive vibrational spectroscopic analysis based on NIR, MIR, and Raman imaging is a unique tool in studying in situ dynamic biological processes.
Collapse
|
7
|
Beć KB, Grabska J, Ozaki Y, Czarnecki MA, Huck CW. Simulated NIR spectra as sensitive markers of the structure and interactions in nucleobases. Sci Rep 2019; 9:17398. [PMID: 31758033 PMCID: PMC6874539 DOI: 10.1038/s41598-019-53827-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Near-infrared (near-IR; NIR) spectroscopy is continuously advancing in biophysical and biochemical fields of investigation. For instance, recent progresses in NIR hyperspectral imaging of biological systems may be noted. However, interpretation of NIR bands for biological samples is difficult and creates a considerable barrier in exploring the full potential of NIR spectroscopy in bioscience. For this reason, we carried out a systematic study of NIR spectra of adenine, cytosine, guanine, and thymine in polycrystalline state. Interpretation of NIR spectra of these nucleobases was supported by anharmonic vibrational analysis using Deperturbed Vibrational Second-Order Perturbation Theory (DVPT2). A number of molecular models of nucleobases was applied to study the effect of the inter-molecular interactions on the NIR spectra. The accuracy of simulated NIR spectra appears to depend on the intra-layer interactions; in contrast, the inter-layer interactions are less influential. The best results were achieved by combining the simulated spectra of monomers and dimers. It is of particular note that in-plane deformation bands are far more populated than out-of-plane ones and the importance of ring modes is relatively small. This trend is in contrast to that observed in mid-IR region. As shown, the local, short-range chemical neighborhood of nucleobase molecules influence their NIR spectra more considerably. This suggests that NIR spectra are more sensitive probe of the nucleobase pairing than mid-IR ones. The obtained results allow, for the first time, to construct a frequency correlation table for NIR spectra of purines and pyrimidines.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Mirosław A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Christan W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Ozaki Y. Recent Advances in Molecular Spectroscopy of Electronic and Vibrational Transitions in Condensed Phase and Its Application to Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|