1
|
Gamage RS, Smith BD. Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:384-397. [PMID: 38817322 PMCID: PMC11134606 DOI: 10.1021/cbmi.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Indocyanine Blue (ICB) is the deep-red pentamethine analogue of the widely used clinical near-infrared heptamethine cyanine dye Indocyanine Green (ICG). The two fluorophores have the same number of functional groups and molecular charge and vary only by a single vinylene unit in the polymethine chain, which produces a predictable difference in spectral and physicochemical properties. We find that the two dyes can be employed as a complementary pair in diverse types of fundamental and applied fluorescence imaging experiments. A fundamental fluorescence spectroscopy study used ICB and ICG to test a recently proposed Förster Resonance Energy Transfer (FRET) mechanism for enhanced fluorescence brightness in heavy water (D2O). The results support two important corollaries of the proposal: (a) the strategy of using heavy water to increase the brightness of fluorescent dyes for microscopy or imaging is most effective when the dye emission band is above 650 nm, and (b) the magnitude of the heavy water florescence enhancement effect for near-infrared ICG is substantially diminished when the ICG surface is dehydrated due to binding by albumin protein. Two applied fluorescence imaging studies demonstrated how deep-red ICB can be combined with a near-infrared fluorophore for paired agent imaging in the same living subject. One study used dual-channel mouse imaging to visualize increased blood flow in a model of inflamed tissue, and a second mouse tumor imaging study simultaneously visualized the vasculature and cancerous tissue in separate fluorescence channels. The results suggest that ICB and ICG can be incorporated within multicolor fluorescence imaging methods for perfusion imaging and hemodynamic characterization of a wide range of diseases.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Xing Z, Dong B, Zhang X, Qiu L, Jiang P, Xuan Y, Ni X, Xu H, Wang J. Cypate-loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual-modal antibacterial therapy. J Biomed Mater Res A 2024; 112:53-64. [PMID: 37728144 DOI: 10.1002/jbm.a.37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms are a significant burden on public health and the economic stability of societies all over the world. The appearance of drug-resistant bacteria has severely blocked the effectiveness of conventional antibiotics. Therefore, developing novel antibiotic-free strategies to combat bacteria holds huge potential for maximizing validity and minimizing the risk of enhancing bacterial resistance. Herein, a cypate-loaded hollow mesoporous Prussian blue nanoparticles (Cy-HMPBs) was built to achieve the PDT/PTT synergistic antimicrobial therapy. The carbomer hydrogel (CH) was combined with the Cy-HMPBs to form a nanoparticle/hydrogel therapeutic system (Cy-HMPBs/CH) to reach the goal of local delivery of antimicrobial cargo. The low concentration of Cy-HMPBs/CH receives over 99% of antimicrobial ability against Escherichia coli and Staphylococcus aureus upon near-infrared (NIR) irradiation. More importantly, Cy-HMPBs/CH has favorable biocompatibility and can play therapeutic effects only after laser irradiation, indicating the on-demand therapy at the targeted region to avert side effects on healthy tissue. This study provides ideas for the design of an antibiotic-free antimicrobial strategy against infectious diseases.
Collapse
Affiliation(s)
- Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Bingyu Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaoxiao Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinye Ni
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Cheng X, Sun Y, Highkin M, Vemalapally N, Jin X, Zhou B, Prior JL, Tipton AR, Li S, Iliuk A, Achilefu S, Hagemann IS, Edwards JR, Bose R. Breast Cancer Mutations HER2V777L and PIK3CAH1047R Activate the p21-CDK4/6-Cyclin D1 Axis to Drive Tumorigenesis and Drug Resistance. Cancer Res 2023; 83:2839-2857. [PMID: 37272756 PMCID: PMC10527017 DOI: 10.1158/0008-5472.can-22-3558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
In metastatic breast cancer, HER2-activating mutations frequently co-occur with mutations in PIK3CA, TP53, or CDH1. Of these co-occurring mutations, HER2 and PIK3CA are the most commonly comutated gene pair, with approximately 40% of HER2-mutated breast cancers also having activating mutations in PIK3CA. To study the effects of co-occurring HER2 and PIK3CA mutations, we generated genetically engineered mice with the HER2V777L; PIK3CAH1047R transgenes (HP mice) and studied the resulting breast cancers both in vivo as well as ex vivo using cancer organoids. HP breast cancers showed accelerated tumor formation in vivo and increased invasion and migration in in vitro assays. HP breast cancer cells were resistant to the pan-HER tyrosine kinase inhibitor, neratinib, but were effectively treated with neratinib plus the HER2-targeted antibody-drug conjugate trastuzumab deruxtecan. Proteomic and RNA-seq analysis of HP breast cancers identified increased gene expression of cyclin D1 and p21WAF1/Cip1 and changes in cell-cycle markers. Combining neratinib with CDK4/6 inhibitors was another effective strategy for treating HP breast cancers, with neratinib plus palbociclib showing a statistically significant reduction in development of mouse HP tumors as compared to either drug alone. The efficacy of both the neratinib plus trastuzumab deruxtecan and neratinib plus palbociclib combinations was validated using a human breast cancer patient-derived xenograft with very similar HER2 and PIK3CA mutations to the HP mice. Further, these two drug combinations effectively treated spontaneous lung metastasis in syngeneic mice transplanted with HP breast cancer organoids. This study provides valuable preclinical data to support the ongoing phase 1 clinical trials of these drug combinations in breast cancer. SIGNIFICANCE In HER2-mutated breast cancer, PIK3CA mutation activates p21-CDK4/6-cyclin D1 signaling to drive resistance to HER2-targeted therapies, which can be overcome using CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yirui Sun
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Highkin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nagalaxmi Vemalapally
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiaohua Jin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brandon Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Julie L. Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley R. Tipton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shunqiang Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Anton Iliuk
- Tymora Analytical Operations, 1201 Cumberland Ave. West Lafayette, IN 47906
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ian S. Hagemann
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - John R. Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Ron Bose
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
4
|
First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng 2019; 4:259-271. [PMID: 31873212 DOI: 10.1038/s41551-019-0494-0] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
The second near-infrared wavelength window (NIR-II, 1,000-1,700 nm) enables fluorescence imaging of tissue with enhanced contrast at depths of millimetres and at micrometre-scale resolution. However, the lack of clinically viable NIR-II equipment has hindered the clinical translation of NIR-II imaging. Here, we describe an optical-imaging instrument that integrates a visible multispectral imaging system with the detection of NIR-II and NIR-I (700-900 nm in wavelength) fluorescence (by using the dye indocyanine green) for aiding the fluorescence-guided surgical resection of primary and metastatic liver tumours in 23 patients. We found that, compared with NIR-I imaging, intraoperative NIR-II imaging provided a higher tumour-detection sensitivity (100% versus 90.6%; with 95% confidence intervals of 89.1%-100% and 75.0%-98.0%, respectively), a higher tumour-to-normal-liver-tissue signal ratio (5.33 versus 1.45) and an enhanced tumour-detection rate (56.41% versus 46.15%). We infer that combining the NIR-I/II spectral windows and suitable fluorescence probes might improve image-guided surgery in the clinic.
Collapse
|
5
|
Miller JP, Ramaswamy R, Akinwande O. Using principal component analysis for the prediction of tumor response to transarterial chemoembolization. Abdom Radiol (NY) 2019; 44:2594-2601. [PMID: 31004201 DOI: 10.1007/s00261-019-01982-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To quantitate the tumor blush of hepatocellular carcinoma (HCC) at the time of transarterial chemoembolization (TACE) using principal component analysis (PCA), and to correlate the quantitated tumor blush to response to therapy. MATERIALS AND METHODS In this proof-of-concept study, 27 primary HCC tumors in 25 patients (18 men, 7 women; mean age 66 years ± 9) were analyzed. We conducted a retrospective analysis of TACE procedures that were performed during March through July of 2017. Digital subtraction angiography (DSA) was combined with PCA to condense spatial and temporal information into a single image. The tumor and liver contrast enhancements were calculated, and the ratio was used to determine the relative vascular enhancement of the tumor. Tumor response to therapy was determined at 1-month post procedure. RESULTS Using PCA-generated fluoroscopic imaging (PCA-FI), we quantitated the tumor blush and assigned a vascular enhancement value (VEV) to each tumor. Tumors that responded to treatment (N = 12) had statistically higher VEVs compared with the nonresponders (N = 15), with a mean value of 0.96 ± 0.455 vs. 0.57 ± 0.309, (p = 0.013). CONCLUSIONS We developed a method for quantitating tumor blush using routine angiographic images. The VEVs calculated using these images may allow for the prediction of tumor response to therapy. This pilot study suggests that there is a correlation between tumor blush intensity and tumor response.
Collapse
Affiliation(s)
- Jessica P Miller
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Raja Ramaswamy
- Department of Interventional Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Olaguoke Akinwande
- Department of Interventional Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol 2019; 21:200-218. [PMID: 29942988 PMCID: PMC6724738 DOI: 10.1007/s11307-018-1239-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Quan P Ly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron M Mohs
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 5-12315 Scott Research Tower, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|