1
|
Chang KW, Karthikesh MS, Zhu Y, Hudson HM, Barbay S, Bundy D, Guggenmos DJ, Frost S, Nudo RJ, Wang X, Yang X. Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202300347. [PMID: 38171947 PMCID: PMC10961203 DOI: 10.1002/jbio.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | | | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Heather M. Hudson
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David Bundy
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David J. Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Shawn Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xinmai Yang
- Bioengineering Graduate Program and Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
2
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Gong X, Jin T, Wang Y, Zhang R, Qi W, Xi L. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function. J Neural Eng 2022; 19. [PMID: 35316796 DOI: 10.1088/1741-2552/ac5fcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Glioma growth may cause pervasive disruptions of brain vascular structure and function. Revealing both structural and functional alterations at a fine spatial scale is challenging for existing imaging techniques, which could confound the understanding of the basic mechanisms of brain diseases. In this study, we apply photoacoustic microscopy with a high spatial-temporal resolution and a wide field of view (FOV) to investigate the glioma-induced alterations of cortical vascular morphology, hemodynamic response, as well as functional connectivity at resting- and stimulated- states. We find that glioma promotes the growth of microvessels and leads to the increase of vascular proportion in the cerebral cortex by deriving structural parameters. The glioma also causes the loss of response in the ipsilateral hemisphere and abnormal response in the contralateral hemisphere, and further induces brain-wide alterations of functional connectivity in resting and stimulated states. The observed results show the foundation of employing photoacoustic microscopy as a potential technique in revealing the underlying mechanisms of brain diseases.
Collapse
Affiliation(s)
- Xinrui Gong
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, 518055, CHINA
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
4
|
Mai TT, Yoo SW, Park S, Kim JY, Choi KH, Kim C, Kwon SY, Min JJ, Lee C. In Vivo Quantitative Vasculature Segmentation and Assessment for Photodynamic Therapy Process Monitoring Using Photoacoustic Microscopy. SENSORS 2021; 21:s21051776. [PMID: 33806466 PMCID: PMC7961824 DOI: 10.3390/s21051776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Vascular damage is one of the therapeutic mechanisms of photodynamic therapy (PDT). In particular, short-term PDT treatments can effectively destroy malignant lesions while minimizing damage to nonmalignant tissue. In this study, we investigate the feasibility of label-free quantitative photoacoustic microscopy (PAM) for monitoring the vasculature changes under the effect of PDT in mouse ear melanoma tumors. In particular, quantitative vasculature evaluation was conducted based on Hessian filter segmentation. Three-dimensional morphological PAM and depth-resolved images before and after PDT treatment were acquired. In addition, five quantitative vasculature parameters, including the PA signal, vessel diameter, vessel density, perfused vessel density, and vessel complexity, were analyzed to evaluate the influence of PDT on four different areas: Two melanoma tumors, and control and normal vessel areas. The quantitative and qualitative results successfully demonstrated the potential of the proposed PAM-based quantitative approach to evaluate the effectiveness of the PDT method.
Collapse
Affiliation(s)
- Thi Thao Mai
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
| | - Suhyun Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Jin Young Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Hospital, 8 Hak-dong, Dong-gu, Gwangju 501-757, Korea;
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2885
| |
Collapse
|
5
|
Pilot Study: Quantitative Photoacoustic Evaluation of Peripheral Vascular Dynamics Induced by Carfilzomib In Vivo. SENSORS 2021; 21:s21030836. [PMID: 33513784 PMCID: PMC7865712 DOI: 10.3390/s21030836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Carfilzomib is mainly used to treat multiple myeloma. Several side effects have been reported in patients treated with carfilzomib, especially those associated with cardiovascular events, such as hypertension, congestive heart failure, and coronary artery disease. However, the side effects, especially the manifestation of cardiovascular events through capillaries, have not been fully investigated. Here, we performed a pilot experiment to monitor peripheral vascular dynamics in a mouse ear under the effects of carfilzomib using a quantitative photoacoustic vascular evaluation method. Before and after injecting the carfilzomib, bortezomib, and PBS solutions, we acquired high-resolution three-dimensional PAM data of the peripheral vasculature of the mouse ear during each experiment for 10 h. Then, the PAM maximum amplitude projection (MAP) images and five quantitative vascular parameters, i.e., photoacoustic (PA) signal, diameter, density, length fraction, and fractal dimension, were estimated. Quantitative results showed that carfilzomib induces a strong effect on the peripheral vascular system through a significant increase in all vascular parameters up to 50%, especially during the first 30 min after injection. Meanwhile, bortezomib and PBS do not have much impact on the peripheral vascular system. This pilot study verified PAM as a comprehensive method to investigate peripheral vasculature, along with the effects of carfilzomib. Therefore, we expect that PAM may be useful to predict cardiovascular events caused by carfilzomib.
Collapse
|
6
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
7
|
Sun M, Li C, Chen N, Zhao H, Ma L, Liu C, Shen Y, Lin R, Gong X. Full three-dimensional segmentation and quantification of tumor vessels for photoacoustic images. PHOTOACOUSTICS 2020; 20:100212. [PMID: 33101929 PMCID: PMC7569216 DOI: 10.1016/j.pacs.2020.100212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 05/05/2023]
Abstract
Quantitative analysis of tumor vessels is of great significance for tumor staging and diagnosis. Photoacoustic imaging (PAI) has been proven to be an effective way to visualize comprehensive tumor vascular networks in three-dimensional (3D) volume, while previous studies only quantified the vessels projected in one plane. In this study, tumor vessels were segmented and quantified in a full 3D framework. It had been verified in the phantom experiments that the 3D quantification results have better accuracy than 2D. Furthermore, in vivo vessel images were quantified by 2D and 3D quantification methods respectively. And the difference between these two results is significant. In this study, complete vessel segmentation and quantification method within a 3D framework was implemented, which showed obvious advantage in the analysis accuracy of 3D photoacoustic images, and potentially improve tumor study and diagnosis.
Collapse
Affiliation(s)
- Mingjian Sun
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Chao Li
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huangxuan Zhao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liyong Ma
- School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Shen
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding authors at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Cheng Z, Lu X, Feng B. A review of research progress of antitumor drugs based on tubulin targets. Transl Cancer Res 2020; 9:4020-4027. [PMID: 35117769 PMCID: PMC8797889 DOI: 10.21037/tcr-20-682] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Microtubules exist in all eukaryotic cells and are one of the critical components that make up the cytoskeleton. Microtubules play a crucial role in supporting cell morphology, cell division, and material transport. Tubulin modulators can promote microtubule polymerization or cause microtubule depolymerization. The modulators interfere with the mitosis of cells and inhibit cell proliferation. Tubulin mainly has three binding domains, namely, paclitaxel, vinca and colchicine binding domains, which are the best targets for the development of anticancer drugs. Currently, drugs for tumor therapy have been developed for these three domains. However, due to its narrow therapeutic window, poor selectivity, and susceptibility to drug resistance, it has severely limited clinical applications. The method of combined medication, the change of administration method, the modification of compound structure, and the research and development of new targets have all changed the side effects of tubulin drugs to a certain extent. In this review, we briefly introduce a basic overview of tubulin and the main mechanism of anti-tumor. Secondly, we focus on the application of drugs which developed based on the three domains of tubulin to various cancers in various fields. Finally, we further provide the development progress of tubulin inhibitors currently in clinical trials.
Collapse
Affiliation(s)
- Ziqi Cheng
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Xuan Lu
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Baomin Feng
- College of Life Science and Technology, Dalian University, Dalian, China
| |
Collapse
|
9
|
Choi S, Kim JY, Lim HG, Baik JW, Kim HH, Kim C. Versatile Single-Element Ultrasound Imaging Platform using a Water-Proofed MEMS Scanner for Animals and Humans. Sci Rep 2020; 10:6544. [PMID: 32300153 PMCID: PMC7162865 DOI: 10.1038/s41598-020-63529-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Single-element transducer based ultrasound (US) imaging offers a compact and affordable solution for high-frequency preclinical and clinical imaging because of its low cost, low complexity, and high spatial resolution compared to array-based US imaging. To achieve B-mode imaging, conventional approaches adapt mechanical linear or sector scanning methods. However, due to its low scanning speed, mechanical linear scanning cannot achieve acceptable temporal resolution for real-time imaging, and the sector scanning method requires specialized low-load transducers that are small and lightweight. Here, we present a novel single-element US imaging system based on an acoustic mirror scanning method. Instead of physically moving the US transducer, the acoustic path is quickly steered by a water-proofed microelectromechanical (MEMS) scanner, achieving real-time imaging. Taking advantage of the low-cost and compact MEMS scanner, we implemented both a tabletop system for in vivo small animal imaging and a handheld system for in vivo human imaging. Notably, in combination with mechanical raster scanning, we could acquire the volumetric US images in live animals. This versatile US imaging system can be potentially used for various preclinical and clinical applications, including echocardiography, ophthalmic imaging, and ultrasound-guided catheterization.
Collapse
Affiliation(s)
- Seongwook Choi
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Kim
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hae Gyun Lim
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Woo Baik
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyung Ham Kim
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Chulhong Kim
- Department of Creative IT Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
Moothanchery M, Dev K, Balasundaram G, Bi R, Olivo M. Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner. JOURNAL OF BIOPHOTONICS 2020; 13:e201960127. [PMID: 31682313 DOI: 10.1002/jbio.201960127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 05/15/2023]
Abstract
Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)-PAM and acoustic resolution (AR)-PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high-speed OR-PAM system was developed earlier. Depth of imaging limits the use of OR-PAM technology for many preclinical and clinical imaging applications. Here, we demonstrate the use of a high-speed MEMS scanner for AR-PAM imaging. Lateral resolution of 84 μm and an axial resolution of 27 μm with ~2.7 mm imaging depth was achieved using a 50 MHz transducer-based AR-PAM system. Use of a higher frequency transducer at 75 MHz has further improved the resolution characteristics of the system with a reduction in imaging depth and a lateral resolution of 53 μm and an axial resolution of 18 μm with ~1.8 mm imaging depth was achieved. Using the two-axis MEMS scanner a 2 × 2 .5 mm2 area was imaged in 3 seconds. The capability of achieving acoustic resolution images using the MEMS scanner makes it beneficial for the development of high-speed miniaturized systems for deeper tissue imaging.
Collapse
Affiliation(s)
- Mohesh Moothanchery
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Kapil Dev
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Ghayathri Balasundaram
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Renzhe Bi
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Li X, Dinish US, Aguirre J, Bi R, Dev K, Attia ABE, Nitkunanantharajah S, Lim QH, Schwarz M, Yew YW, Thng STG, Ntziachristos V, Olivo M. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. JOURNAL OF BIOPHOTONICS 2019; 12:e201800442. [PMID: 31012286 DOI: 10.1002/jbio.201800442] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 05/07/2023]
Abstract
Raster Scanning Optoacoustic Mesoscopy (RSOM) is a novel optoacoustic imaging modality that offers non-invasive, label-free, high resolution (~7 μm axial, ~30 μm lateral) imaging up to 1 to 2 mm below the skin, providing novel quantitative insights into skin pathophysiology. As the RSOM image contrast mechanism is based on light absorption, it is expected that the amount of melanin present in the skin will affect RSOM images. However, the effect of skin tone in the performance of RSOM has not been addressed so far. Herein, we present the efficiency of RSOM for in vivo skin imaging of human subjects with Fitzpatrick (FP) skin types between II to V. RSOM images acquired from the volar forearms of the subjects were used to derive metrics used in RSOM studies, such as total blood volume, vessel diameter and melanin signal intensity. Our study shows that the melanin signal intensity derived from the RSOM images exhibited an excellent correlation with that obtained from a clinical colorimeter for the subjects of varying FP skin types. We could successfully estimate the vessel diameter at different depths of the dermis. Furthermore, our study shows that there is a need to compensate for total blood volume calculated for subjects with higher FP skin types due to the lower signal-to-noise ratio in dermis, owing to strong absorption of light by melanin. This study sheds light into how RSOM can be used for studying various skin conditions in populations with different skin phenotypes.
Collapse
Affiliation(s)
- Xiuting Li
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Renzhe Bi
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Kapil Dev
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | - Qian Han Lim
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | | | | | | | - Vasilis Ntziachristos
- Technical University of Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
12
|
Chen Q, Xie H, Xi L. Wearable optical resolution photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900066. [PMID: 30989817 PMCID: PMC6688948 DOI: 10.1002/jbio.201900066] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 05/08/2023]
Abstract
Optical resolution photoacoustic microscopy (ORPAM) is an emerging imaging technique, which has been extensively used to study various brain activities and disorders of the anesthetized/restricted rodents with a special focus on the morphological and functional visualization of cerebral cortex. However, it is challenging to develop a wearable photoacoustic microscope, which enables the investigation of brain activities/disorders on freely moving rodents. Here, we report a wearable and robust optical resolution photoacoustic microscope (W-ORPAM), which utilizes a small, light, stable and fast optical scanner. This wearable imaging probe features high spatiotemporal resolution, large field of view (FOV) and easy assembly as well as adjustable optical focus during the in vivo experiment, which makes it accessible to image cerebral cortex activities of freely moving rodents. To demonstrate the advantages of this technique, we used W-ORPAM to monitor both morphological and functional variations of vasculature in cerebral cortex during the induction of ischemia and reperfusion of a freely moving rat.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huikai Xie
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Bi R, Dinish US, Goh CC, Imai T, Moothanchery M, Li X, Kim JY, Jeon S, Pu Y, Kim C, Ng LG, Wang LV, Olivo M. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion. JOURNAL OF BIOPHOTONICS 2019; 12:e201800454. [PMID: 30865386 DOI: 10.1002/jbio.201800454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 03/03/2019] [Indexed: 05/18/2023]
Abstract
Pressure ulcer formation is a common problem among patients confined to bed or restricted to wheelchairs. The ulcer forms when the affected skin and underlying tissues go through repeated cycles of ischemia and reperfusion, leading to inflammation. This theory is evident by intravital imaging studies performed in immune cell-specific, fluorescent reporter mouse skin with induced ischemia-reperfusion (I-R) injuries. However, traditional confocal or multiphoton microscopy cannot accurately monitor the progression of vascular reperfusion by contrast agents, which leaks into the interstitium under inflammatory conditions. Here, we develop a dual-wavelength micro electro mechanical system (MEMS) scanning-based optical resolution photoacoustic microscopy (OR-PAM) system for continuous label-free functional imaging of vascular reperfusion in an IR mouse model. This MEMS-OR-PAM system provides fast scanning speed for concurrent dual-wavelength imaging, which enables continuous monitoring of the reperfusion process. During reperfusion, the revascularization of blood vessels and the oxygen saturation (sO2 ) changes in both arteries and veins are recorded, from which the local oxygen extraction ratios of the ischemic tissue and the unaffected tissue can be quantified. Our MEMS-OR-PAM system provides novel perspectives to understand the I-R injuries. It solves the problem of dynamic label-free functional monitoring of the vascular reperfusion at high spatial resolution.
Collapse
Affiliation(s)
- Renzhe Bi
- Singapore Bioimaging Consortium, Singapore
| | - U S Dinish
- Singapore Bioimaging Consortium, Singapore
| | | | - Toru Imai
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | | | - Xiuting Li
- Singapore Bioimaging Consortium, Singapore
| | - Jin Young Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Yang Pu
- MicroPhotoAcoustics Inc., Ronkonkoma, New York
| | - Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | | | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering and Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | | |
Collapse
|
14
|
Zhao Z, Chen C, Wu W, Wang F, Du L, Zhang X, Xiong Y, He X, Cai Y, Kwok RTK, Lam JWY, Gao X, Sun P, Phillips DL, Ding D, Tang BZ. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nat Commun 2019; 10:768. [PMID: 30770816 PMCID: PMC6377612 DOI: 10.1038/s41467-019-08722-z] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenting Wu
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Fenfen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 000000, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Xiong
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Xuewen He
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuanjing Cai
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 000000, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| |
Collapse
|
15
|
Balasundaram G, Ding L, Li X, Attia ABE, Dean-Ben XL, Ho CJH, Chandrasekharan P, Tay HC, Lim HQ, Ong CB, Mason RP, Razansky D, Olivo M. Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography. Transl Oncol 2018; 11:1251-1258. [PMID: 30103155 PMCID: PMC6092474 DOI: 10.1016/j.tranon.2018.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO2) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO2 upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO2 in whole mouse brains. RESULTS Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO2 of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO2 of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO2 in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Lu Ding
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Xiuting Li
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Xose Luis Dean-Ben
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Chris Jun Hui Ho
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Prashant Chandrasekharan
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hui Chien Tay
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hann Qian Lim
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Chee Bing Ong
- Advanced Molecular Pathology Lab (AMPL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos building, Singapore 138673
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667.
| |
Collapse
|