1
|
Mohsin N, Khalid S, Rasool N, Aman L, Kanwal A, Imran M. Metallo-Organic Complexes Containing Transition Metals; Synthetic Approaches and Pharmaceutical Aspects. Chempluschem 2025:e202400748. [PMID: 39988561 DOI: 10.1002/cplu.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Coordination compounds offer a flexible framework for the thoughtful design of novel therapeutic-metallodrugs because of the unique properties of metal ions, such as their ability to coordinate with a wide range of organic ligands, variable oxidation states, a wide range of geometries, and coordination numbers. The pharmaceutical potential of a metal ion and associated substances is validated by the prevalence of various disease states linked to a metal ion's excess or deficiency within the biological system. Researchers have sought more selective, efficacious metallodrugs that cause fewer adverse effects. Attempts have resulted in considering a large range of organic ligands, preferably polydentate ligands with demonstrated biological activity, and a large range of metals from the periodic table, primarily from the d-block. In this review, we have outlined the key coordination complexes comprising N-, O-, and S-donor ligands reported in the last six years to demonstrate the potential applications of these metallo-organic complexes. The synthetic pathways of ligands, their complexes, and their potential for therapeutic applications are highlighted.
Collapse
Affiliation(s)
- Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Labiqa Aman
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Shirmanova MV, Lukina MM, Sirotkina MA, Shimolina LE, Dudenkova VV, Ignatova NI, Tobita S, Shcheslavskiy VI, Zagaynova EV. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. Int J Mol Sci 2024; 25:1703. [PMID: 38338976 PMCID: PMC10855179 DOI: 10.3390/ijms25031703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.
Collapse
Affiliation(s)
- Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Maria M. Lukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Varvara V. Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Nadezhda I. Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
4
|
Imberti C, Lok J, Coverdale JPC, Carter OWL, Fry ME, Postings ML, Kim J, Firth G, Blower PJ, Sadler PJ. Radiometal-Labeled Photoactivatable Pt(IV) Anticancer Complex for Theranostic Phototherapy. Inorg Chem 2023; 62:20745-20753. [PMID: 37643591 PMCID: PMC10731635 DOI: 10.1021/acs.inorgchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/31/2023]
Abstract
A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jamie Lok
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - James P. C. Coverdale
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Millie E. Fry
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Miles L. Postings
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jana Kim
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
5
|
Mei X, Fang Q, Selvaganapathy PR. Three-dimensional oxygen concentration monitoring in hydrogels using low-cost phosphorescence lifetime imaging for tissue engineering. BIOMEDICAL OPTICS EXPRESS 2023; 14:4759-4774. [PMID: 37791279 PMCID: PMC10545174 DOI: 10.1364/boe.493340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 10/05/2023]
Abstract
Oxygen concentration measurement in 3D hydrogels is vital in 3D cell culture and tissue engineering. However, standard 3D imaging systems capable of measuring oxygen concentration with adequate precision are based on advanced microscopy platforms, which are not accessible in many laboratories due to the system's complexity and the high price. In this work, we present a fast and low-cost phosphorescence lifetime imaging design for measuring the lifetime of oxygen-quenched phosphorescence emission with 0.25 µs temporal precision and sub-millimeter spatial resolution in 3D. By combining light-sheet illumination and the frequency-domain lifetime measurement using a commercial rolling-shutter CMOS camera in the structure of a conventional optical microscope, this design is highly customizable to accommodate application-specific research needs while also being low-cost as compared to advanced instruments. As a demonstration, we made a fluidic device with a gas-permeable film to create an artificial oxygen gradient in the hydrogel sample. Dye-embedded beads were distributed in the hydrogel to conduct continuous emission lifetime monitoring when nitrogen was pumped through the fluidic channel and changed oxygen distribution in the sample. The dynamics of the changes in lifetime co-related with their location in the gel of size 0.5 mm×1.5 mm×700 µm demonstrate the ability of this design to measure the oxygen concentration stably and precisely in 3D samples.
Collapse
Affiliation(s)
- Xu Mei
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - P. Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Belashov A, Zhikhoreva A, Salova A, Belyaeva T, Litvinov I, Kornilova E, Semenova I, Vasyutinskii O. Analysis of Radachlorin localization in living cells by fluorescence lifetime imaging microscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 243:112699. [PMID: 37030133 DOI: 10.1016/j.jphotobiol.2023.112699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Intracellular localization of photosensitizer molecules is influential on cell death pathway at photodynamic treatment and is thus an important aspect in achieving enhanced efficacy of photodynamic therapy. In this paper we performed thorough studies of the distribution of Radachlorin photosensitizer in three established cell lines: HeLa, A549, and 3T3 with fluorescence lifetime imaging microscopy through the analysis of lifetime distributions. Experiments carried out in Radachlorin solutions in phosphate buffered saline revealed the pronounced dependence of the fluorescence quantum yield and lifetime on solution pH. This finding was used for analysis of lifetime images of living cells and their phasor plot representations and allowed us to suggest that Radachlorin localized predominantly in lysosomes, known to have acidic pH values. Experiments on co-localization of Radachlorin fluorescence lifetimes and LysoTracker fluorescence intensity supported this suggestion. The results obtained show that the inhomogeneity of fluorescence quantum yield within a cell can be significant due to lower pH values in lysosomes than in other intracellular compartments. This finding suggests that the actual amount of accumulated Radachlorin can be underestimated if being evaluated solely by comparison of fluorescence intensities.
Collapse
|
7
|
Naskar N, Liu W, Qi H, Stumper A, Fischer S, Diemant T, Behm RJ, Kaiser U, Rau S, Weil T, Chakrabortty S. A Carbon Nanodot Based Near-Infrared Photosensitizer with a Protein-Ruthenium Shell for Low-Power Photodynamic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48327-48340. [PMID: 36269223 DOI: 10.1021/acsami.2c08585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Near-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e., utilization of photons with relatively low energy but high photon flux for populating a virtual intermediate state leading to an excited state, is attractive. This concept would be highly advantageous in photodynamic therapy due to its minimal side effects. Herein, we propose that the combination of plasma protein serum albumin (HSA) containing several Ru complexes and NIR two-photon excitable carbon nanodots (Cdots), termed HSA-Ru-Cdots, provides several attractive features for enhancing singlet oxygen formation within the mitochondria of cancer cells stimulated by two-photon excitation in the NIR region. HSA-Ru-Cdot features biocompatibility, water solubility, and photostability as well as uptake into cancer cells with an endosomal release, which is an essential feature for subcellular targeting of mitochondria. The NIR two-photon excitation induced visible emission of the Cdots allows fluorescence resonance energy transfer (FRET) to excite the metal-to-ligand charge transfer of the Ru moiety, and fluorescence-lifetime imaging microscopy (FLIM) has been applied to demonstrate FRET within the cells. The NIR two-photon excitation is indirectly transferred to the Ru complexes, which leads to the production of singlet oxygen within the mitochondria of cancer cells. Consequently, we observe the destruction of filamentous mitochondrial structures into spheroid aggregates within various cancer cell lines. Cell death is induced by the long-wavelength NIR light irradiation at 810 nm with a low power density (7 mW/cm2), which could be attractive for phototherapy applications where deeper tissue penetration is crucial.
Collapse
Affiliation(s)
- Nilanjon Naskar
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Weina Liu
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Haoyuan Qi
- Central Facility for Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Mommsenstrasse 4, D-01062Dresden, Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Thomas Diemant
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081Ulm, Germany
| | - Ute Kaiser
- Central Facility for Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Tanja Weil
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Sabyasachi Chakrabortty
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, D-89081Ulm, Germany
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh522502, India
| |
Collapse
|
8
|
Wang R, Wei M, Wang X, Chen Y, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis of ruthenium polypyridine complexes with benzyloxyl groups and their antibacterial activities against Staphylococcus aureus. J Inorg Biochem 2022; 236:111954. [PMID: 35988386 DOI: 10.1016/j.jinorgbio.2022.111954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Four new ruthenium polypyridyl complexes, [Ru(bpy)2(BPIP)](PF6)2 (Ru(II)-1), [Ru(dtb)2(BPIP)](PF6)2 (Ru(II)-2), [Ru(dmb)2(BPIP)](PF6)2 (Ru(II)-3) and [Ru(dmob)2(BPIP)](PF6)2 (Ru(II)-4) (bpy = 2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dmob = 4,4'-dimethoxy-2,2'-bipyridine and BPIP = 2-(3,5-bis(benzyloxyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) had been synthesized and characterized. Their antimicrobial activities were investigated against Staphylococcus aureus (S. aureus) and four complexes showed obvious antibacterial effect, especially the minimum inhibition concentration (MIC) value of Ru(II)-3 was only 4 μg/mL. In addition, Ru(II)-3 was able to kill bacteria quickly and inhibit the formation of biofilm. Meanwhile, the cooperative effect between Ru(II)-3 and general antibiotics were tested and the results showed that Ru(II)-3 could enhance the susceptibility of S. aureus to different types of antibiotics. Most importantly, Ru(II)-3 hardly showed cytotoxicity to mammalian erythrocytes both in homelysis experiment and G. mellonella model. After being injected with high doses of the Ru(II)-3in vivo, the G. mellonella worms still exhibited high survival rates. Finally, a mouse skin infection model and G. mellonella infection model was built to determine the antibacterial activity of Ru(II)-3in vivo. The antibacterial mechanism of Ru(II)-3 was probably related to the membrane-disruption. Taken together, ruthenium polypyridine complexes with benzyloxyl groups had the potential to develop an attractive and untraditional antibacterial agent with new mode of action.
Collapse
Affiliation(s)
- Runbin Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China
| | - Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222000, China
| | - Xuerong Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yushou Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China.
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science&Technology Normal University, Nanchang 330013, People's Republic of China.
| |
Collapse
|
9
|
Munegowda MA, Manalac A, Weersink M, Cole HD, McFarland SA, Lilge L. Ru(II) CONTAINING PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY: A CRITIQUE ON REPORTING AND AN ATTEMPT TO COMPARE EFFICACY. Coord Chem Rev 2022; 470:214712. [PMID: 36686369 PMCID: PMC9850455 DOI: 10.1016/j.ccr.2022.214712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ruthenium(II)-based coordination complexes have emerged as photosensitizers (PSs) for photodynamic therapy (PDT) in oncology as well as antimicrobial indications and have great potential. Their modular architectures that integrate multiple ligands can be exploited to tune cellular uptake and subcellular targeting, solubility, light absorption, and other photophysical properties. A wide range of Ru(II) containing compounds have been reported as PSs for PDT or as photochemotherapy (PCT) agents. Many studies employ a common scaffold that is subject to systematic variation in one or two ligands to elucidate the impact of these modifications on the photophysical and photobiological performance. Studies that probe the excited state energies and dynamics within these molecules are of fundamental interest and are used to design next-generation systems. However, a comparison of the PDT efficacy between Ru(II) containing PSs and 1st or 2nd generation PSs, already in clinical use or preclinical/clinical studies, is rare. Even comparisons between Ru(II) containing molecular structures are difficult, given the wide range of excitation wavelengths, power densities, and cell lines utilized. Despite this gap, PDT dose metrics quantifying a PS's efficacy are available to perform qualitative comparisons. Such models are independent of excitation wavelength and are based on common outcome parameters, such as the photon density absorbed by the Ru(II) compound to cause 50% cell kill (LD50) based on the previously established threshold model. In this focused photophysical review, we identified all published studies on Ru(II) containing PSs since 2005 that reported the required photophysical, light treatment, and in vitro outcome data to permit the application of the Photodynamic Threshold Model to quantify their potential efficacy. The resulting LD50 values range from less than 1013 to above 1020 [hν cm-3], indicating a wide range in PDT efficacy and required optical energy density for ultimate clinical translation.
Collapse
Affiliation(s)
| | - Angelica Manalac
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| | - Madrigal Weersink
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
| | - Houston D. Cole
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Sherri A. McFarland
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
10
|
Simultaneous Probing of Metabolism and Oxygenation of Tumors In Vivo Using FLIM of NAD(P)H and PLIM of a New Polymeric Ir(III) Oxygen Sensor. Int J Mol Sci 2022; 23:ijms231810263. [PMID: 36142177 PMCID: PMC9499414 DOI: 10.3390/ijms231810263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo. The sensor, derived from a polynorbornene and cyclometalated iridium(III) complex, exhibits the oxygen-dependent quenching of phosphorescence with a 40% longer lifetime in degassed compared to aerated solutions. In vitro, hypoxia resulted in a correlative increase in PIr3 phosphorescence lifetime and free (glycolytic) NAD(P)H fraction in cells. In vivo, mouse tumors demonstrated a high degree of cellular-level heterogeneity of both metabolic and oxygen states, and a lower dependence of metabolism on oxygen than cells in vitro. The small tumors were hypoxic, while the advanced tumors contained areas of normoxia and hypoxia, which was consistent with the pimonidazole assay and angiographic imaging. Dual FLIM/PLIM metabolic/oxygen imaging will be valuable in preclinical investigations into the effects of hypoxia on metabolic aspects of tumor progression and treatment response.
Collapse
|
11
|
Ma Y, Wei M, Wang X, Jiang L, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis and antibacterial against
S. aureus
of new ruthenium (II) polypyridine complexes containing pyrene groups. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanyuan Ma
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Ming Wei
- Kangda College of Nanjing Medical University Lianyungang Jiangsu China
| | - Xuerong Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Li Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin People’s Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| |
Collapse
|
12
|
Deng M, Sun J, Peng L, Huang Y, Jiang W, Wu S, Zhou L, Chung SK, Cheng X. Scutellarin acts on the AR-NOX axis to remediate oxidative stress injury in a mouse model of cerebral ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154214. [PMID: 35689902 DOI: 10.1016/j.phymed.2022.154214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.
Collapse
Affiliation(s)
- Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lilin Peng
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Wen Jiang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Shuang Wu
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China.
| |
Collapse
|
13
|
Grist SM, Bennewith KL, Cheung KC. Oxygen Measurement in Microdevices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:221-246. [PMID: 35696522 DOI: 10.1146/annurev-anchem-061020-111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen plays a fundamental role in respiration and metabolism, and quantifying oxygen levels is essential in many environmental, industrial, and research settings. Microdevices facilitate the study of dynamic, oxygen-dependent effects in real time. This review is organized around the key needs for oxygen measurement in microdevices, including integrability into microfabricated systems; sensor dynamic range and sensitivity; spatially resolved measurements to map oxygen over two- or three-dimensional regions of interest; and compatibility with multimodal and multianalyte measurements. After a brief overview of biological readouts of oxygen, followed by oxygen sensor types that have been implemented in microscale devices and sensing mechanisms, this review presents select recent applications in organs-on-chip in vitro models and new sensor capabilities enabling oxygen microscopy, bioprocess manufacturing, and pharmaceutical industries. With the advancement of multiplexed, interconnected sensors and instruments and integration with industry workflows, intelligent microdevice-sensor systems including oxygen sensors will have further impact in environmental science, manufacturing, and medicine.
Collapse
Affiliation(s)
- Samantha M Grist
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Karen C Cheung
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Mizukami K, Muraoka T, Shiozaki S, Tobita S, Yoshihara T. Near-Infrared Emitting Ir(III) Complexes Bearing a Dipyrromethene Ligand for Oxygen Imaging of Deeper Tissues In Vivo. Anal Chem 2022; 94:2794-2802. [PMID: 35109653 DOI: 10.1021/acs.analchem.1c04271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorescence lifetime imaging microscopy (PLIM) using a phosphorescent oxygen probe is an innovative technique for elucidating the behavior of oxygen in living tissues. In this study, we designed and synthesized an Ir(III) complex, PPYDM-BBMD, that exhibits long-lived phosphorescence in the near-infrared region and enables in vivo oxygen imaging in deeper tissues. PPYDM-BBMD has a π-extended ligand based on a meso-mesityl dipyrromethene structure and phenylpyridine ligands with cationic dimethylamino groups to promote intracellular uptake. This complex gave a phosphorescence spectrum with a maximum at 773 nm in the wavelength range of the so-called biological window and exhibited an exceptionally long lifetime (18.5 μs in degassed acetonitrile), allowing for excellent oxygen sensitivity even in the near-infrared window. PPYDM-BBMD showed a high intracellular uptake in cultured cells and mainly accumulated in the endoplasmic reticulum. We evaluated the oxygen sensitivity of PPYDM-BBMD phosphorescence in alpha mouse liver 12 (AML12) cells based on the Stern-Volmer analysis, which gave an O2-induced quenching rate constant of 1.42 × 103 mmHg-1 s-1. PPYDM-BBMD was administered in the tail veins of anesthetized mice, and confocal one-photon PLIM images of hepatic tissues were measured at different depths from the liver surfaces. The PLIM images visualized the oxygen gradients in hepatic lobules up to a depth of about 100 μm from the liver surfaces with a cellular-level resolution, allowing for the quantification of oxygen partial pressure based on calibration results using AML12 cells.
Collapse
Affiliation(s)
- Kiichi Mizukami
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Takako Muraoka
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Shuichi Shiozaki
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
15
|
Zhang Q, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis and biological evaluation of ruthenium polypyridine complexes with 18β-glycyrrhetinic acid as antibacterial agents against Staphylococcus aureus. Dalton Trans 2021; 51:1099-1111. [PMID: 34935812 DOI: 10.1039/d1dt02692e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Four new ruthenium(II) polypyridine complexes bearing 18β-glycyrrhetinic acid derivatives, [Ru(bpy)2L](PF6)2 (Ru1), [Ru(dmb)2L](PF6)2 (Ru2), [Ru(dtb)2L](PF6)2 (Ru3) and [Ru(phen)2L](PF6)2 (Ru4) (bpy = 2,2-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, phen = 1,10-phenanthroline and L is the GA modified new ligand) were designed and synthesized. Their antimicrobial activities against Staphylococcus aureus (S. aureus) were evaluated and all complexes showed an obvious inhibitory effect, especially, the minimum inhibitory concentration (MIC) value of Ru2 was 3.9 μg mL-1. Moreover, Ru2 was found to significantly inhibit the formation of biofilms. The membrane-compromising action mode was suggested to be their potential antibactericidal mechanism. In hemolysis experiments, Ru2 hardly showed cytotoxicity to mammalian erythrocytes. Furthermore, the synergism between Ru2 and common antibiotics, such as ampicillin, chloramphenicol, tetracyclines and ofloxacin, against S. aureus was also detected using the checkerboard method. Finally, a mouse skin infection model was established to evaluate the antibacterial activity of Ru2in vivo, and the results showed that Ru2 could effectively promote wound healing in mice infected with S. aureus. Moreover, the results of histopathological research were consistent with the results of the hemolysis test, indicating that the Ru2 complex was almost non-toxic. Thus, it was demonstrated that the polypyridine ruthenium complexes modified with glycyrrhetinic acid (GA) are a promising strategy for developing interesting antibacterial agents.
Collapse
Affiliation(s)
- Qin Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People's Republic of China.
| |
Collapse
|
16
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
17
|
Binhammer Y, Binhammer T, Mevert R, Lang T, Rück A, Morgner U. Fast-tunable femtosecond visible radiation via sum-frequency generation from a high power NIR NOPO. OPTICS EXPRESS 2021; 29:22366-22375. [PMID: 34266002 DOI: 10.1364/oe.427102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
We report on a high power ultra-broadband, quickly tunable non-collinear parametric oscillator with highly efficient intra-cavity sum-frequency generation. It simultaneously delivers femtosecond pulses in two synchronized output beams: up to 4.9 W tunable from 650 to 1050 nm in the near infrared and up to 1.9 W from 380 to 500 nm in the visible spectral range. The (to our knowledge) novel source is ideally suited for spectroscopy or multi-color imaging. First results of two-color functional microscopy are presented.
Collapse
|
18
|
Freymüller C, Kalinina S, Rück A, Sroka R, Rühm A. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD. JOURNAL OF BIOPHOTONICS 2021; 14:e202100024. [PMID: 33749988 DOI: 10.1002/jbio.202100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Two-photon fluorescence lifetime imaging is a versatile laboratory technique in the field of biophotonics and its importance is also growing in the field of in vivo diagnostics for medical purposes. After years of experience in dermatology, endoscopic implementations of the technique are now posing new technical challenges. To develop, test, and compare instrumental solutions for this purpose suitable reference samples have been devised and tested. These reference samples can serve as reliable NADH- and FAD-mimicking optical phantoms for 2-photon fluorescence lifetime imaging, as they can be prepared relatively easily with reproducible and stable characteristics for this quite relevant diagnostic technique. The reference samples (mixtures of coumarin 1 and coumarin 6 in ethanol with suitable amounts of 4-hydroxy-TEMPO) have been tuned to exhibit spectral and temporal fluorescence characteristics very similar to those of NADH and FAD, the two molecules most frequently utilized to characterize cell metabolism.
Collapse
Affiliation(s)
- Christian Freymüller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Angelika Rück
- Core Facility Confocal and Multiphoton Microscopy N24, University of Ulm, Ulm, Germany
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Adrian Rühm
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Planegg, Germany
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
20
|
Kalinina S, Freymueller C, Naskar N, von Einem B, Reess K, Sroka R, Rueck A. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques. Int J Mol Sci 2021; 22:5952. [PMID: 34073057 PMCID: PMC8199032 DOI: 10.3390/ijms22115952] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.
Collapse
Affiliation(s)
- Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Christian Freymueller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nilanjon Naskar
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Bjoern von Einem
- Zentrum Biomedizinische Forschung (ZBMF), Department of Neurology, Ulm University, Helmholtzstrasse, 8/1, 89081 Ulm, Germany;
| | - Kirsten Reess
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| |
Collapse
|
21
|
Hua W, Xu G, Zhao J, Wang Z, Lu J, Sun W, Gou S. DNA‐Targeting Ru
II
‐Polypyridyl Complex with a Long‐Lived Intraligand Excited State as a Potential Photodynamic Therapy Agent. Chemistry 2020; 26:17495-17503. [DOI: 10.1002/chem.202003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Wuyang Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Z. Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108-6050 USA
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center School of Chemistry and Chemical, Engineering Southeast University Nanjing 211189 P.R. China
| |
Collapse
|
22
|
A photoactivatable Ru (II) complex bearing 2,9-diphenyl-1,10-phenanthroline: A potent chemotherapeutic drug inducing apoptosis in triple negative human breast adenocarcinoma cells. Chem Biol Interact 2020; 336:109317. [PMID: 33197429 DOI: 10.1016/j.cbi.2020.109317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The photoactivatable Ru (II) complex 1 [Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) has been shown to possess promising anticancer activity against triple negative adenocarcinoma MDA-MB-231 cells. The present study aims to elucidate the plausible mechanism of action of the photoactivatable complex 1 against MDA-MB-231 cells. Upon photoactivation, complex 1 exhibited time-dependent cytotoxic activity with a phototoxicity index (P Index) of >100 after 72 h. A significant increase in cell rounding and detachment, loss of membrane integrity, ROS accumulation and DNA damage was observed. Flow cytometry and a fluorescent apoptosis/necrosis assay showed an induction of cell apoptosis. Western blot analysis revealed the induction of intrinsic and extrinsic pathways and inhibition of the MAPK and PI3K pathways. The photoproduct of complex 1 showed similar effects on key apoptotic protein expression confirming that it is behind the observed cell death. In conclusion, the present study revealed that complex 1 is a potent multi-mechanistic photoactivatable chemotherapeutic drug that may serve as a potential lead molecule for targeted cancer chemotherapy.
Collapse
|
23
|
Shum J, Leung PKK, Lo KKW. Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications. Inorg Chem 2019; 58:2231-2247. [DOI: 10.1021/acs.inorgchem.8b02979] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem Rev 2019; 119:797-828. [PMID: 30295467 PMCID: PMC6453754 DOI: 10.1021/acs.chemrev.8b00211] [Citation(s) in RCA: 872] [Impact Index Per Article: 145.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.
Collapse
Affiliation(s)
- Susan Monro
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - Katsuya L. Colón
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - John Roque
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
- Department of Biology, Dalhousie University, Halifax, Nova
Scotia, Canada B3H 1X5
- Centre for Innovative and Collaborative Health Services
Research, IWK Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, Houston,
Texas 77204-5003, United States
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
101 College Street, Toronto, Ontario, Canada M6R1Z7
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
| |
Collapse
|
25
|
Jakubaszek M, Goud B, Ferrari S, Gasser G. Mechanisms of action of Ru(ii) polypyridyl complexes in living cells upon light irradiation. Chem Commun (Camb) 2018; 54:13040-13059. [PMID: 30398487 DOI: 10.1039/c8cc05928d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unique photophysical properties of Ru(ii) polypyridyl complexes make them very attractive candidates as photosensitisers in Photodynamic Therapy (PDT). However, to date, there are not many studies exploring in detail the mechanism(s) of action of such compounds in living systems upon light irradiation. This feature article provides an overview of the most in-depth biological studies on such compounds.
Collapse
Affiliation(s)
- Marta Jakubaszek
- Chimie ParisTech, PSL University, Laboratory for Inorganic Chemical Biology, Paris, France.
| | | | | | | |
Collapse
|