1
|
Han X, Zhang Y, Shi G, Liu G, Ai S, Wang Y, Zhang Q, He X. Quantitative assessment of corneal elasticity distribution after FS-LASIK using optical coherence elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300441. [PMID: 38221644 DOI: 10.1002/jbio.202300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Quantifying corneal elasticity after femtosecond laser-assisted in situ keratomileusis (FS-LASIK) procedure plays an important role in improving surgical safety and quality, since some latent complications may occur ascribing to changes in postoperative corneal biomechanics. Nevertheless, it is suggested that current research has been severely constrained due to the lack of an accurate quantification method to obtain postoperative corneal elasticity distribution. In this paper, an acoustic radiation force optical coherence elastography system combined with the improved phase velocity algorithm was utilized to realize elasticity distribution images of the in vivo rabbit cornea after FS-LASIK under various intraocular pressure levels. As a result, elasticity variations within and between the regions of interest could be identified precisely. This is the first time that elasticity imaging of in vivo cornea after FS-LASIK surgery was demonstrated, and the results suggested that this technology may hold promise in further exploring corneal biomechanical properties after refractive surgery.
Collapse
Affiliation(s)
- Xiao Han
- School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing, P. R. China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Gang Shi
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Guo Liu
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Sizhu Ai
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yidi Wang
- School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing, P. R. China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Qin Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| | - Xingdao He
- School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing, P. R. China
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, P. R. China
| |
Collapse
|
2
|
Liu Z, Liu W, Chen Q, Hu Y, Li Y, Zheng X, Fang D, Liu H, Sun C. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6019. [PMID: 37687714 PMCID: PMC10488803 DOI: 10.3390/ma16176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Viscoelasticity of the soft tissue is an important mechanical factor for disease diagnosis, biomaterials testing and fabrication. Here, we present a real-time and high-resolution viscoelastic response-optical coherence elastography (VisR-OCE) method based on acoustic radiation force (ARF) excitation and optical coherence tomography (OCT) imaging. The relationship between displacements induced by two sequential ARF loading-unloading and the relaxation time constant of the soft tissue-is established for the Kelvin-Voigt material. Through numerical simulation, the optimal experimental parameters are determined, and the influences of material parameters are evaluated. Virtual experimental results show that there is less than 4% fluctuation in the relaxation time constant values obtained when various Young's modulus and Poisson's ratios were given for simulation. The accuracy of the VisR-OCE method was validated by comparing with the tensile test. The relaxation time constant of phantoms measured by VisR-OCE differs from the tensile test result by about 3%. The proposed VisR-OCE method may provide an effective tool for quick and nondestructive viscosity testing of biological tissues.
Collapse
Affiliation(s)
- Zhixin Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Weidong Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Qi Chen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yongzheng Hu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yurun Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Xiaoya Zheng
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Dian Fang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Hai Liu
- Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Tianjin 300130, China;
| | - Cuiru Sun
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| |
Collapse
|
3
|
Yang C, Xiang Z, Li Z, Nan N, Wang X. Optical coherence elastography to evaluate depth-resolved elasticity of tissue. OPTICS EXPRESS 2022; 30:8709-8722. [PMID: 35299317 DOI: 10.1364/oe.451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Skin-elasticity measurements can assist in the clinical diagnosis of skin diseases, which has important clinical significance. Accurately determining the depth-resolved elasticity of superficial biological tissue is an important research direction. This paper presents an optical coherence elastography technique that combines surface acoustic waves and shear waves to obtain the elasticity of multilayer tissue. First, the phase velocity of the high-frequency surface acoustic wave is calculated at the surface of the sample to obtain the Young's modulus of the top layer. Then, the shear wave velocities in the other layers are calculated to obtain their respective Young's moduli. In the bilayer phantom experiment, the maximum error in the elastic estimation of each layer was 2.2%. The results show that the proposed method can accurately evaluate the depth-resolved elasticity of layered tissue-mimicking phantoms, which can potentially expand the clinical applications of elastic wave elastography.
Collapse
|
4
|
Zhang Y, Zhou K, Feng Z, Feng K, Ji Y, Li C, Huang Z. Viscoelastic properties' characterization of corneal stromal models using non-contact surface acoustic wave optical coherence elastography (SAW-OCE). JOURNAL OF BIOPHOTONICS 2022; 15:e202100253. [PMID: 34713598 DOI: 10.1002/jbio.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Viscoelastic characterization of the tissue-engineered corneal stromal model is important for our understanding of the cell behaviors in the pathophysiologic altered corneal extracellular matrix (ECM). The effects of the interactions between stromal cells and different ECM characteristics on the viscoelastic properties during an 11-day culture period were explored. Collagen-based hydrogels seeded with keratocytes were used to replicate human corneal stroma. Keratocytes were seeded at 8 × 103 cells per hydrogel and with collagen concentrations of 3, 5 and 7 mg/ml. Air-pulse-based surface acoustic wave optical coherence elastography (SAW-OCE) was employed to monitor the changes in the hydrogels' dimensions and viscoelasticity over the culture period. The results showed the elastic modulus increased by 111%, 56% and 6%, and viscosity increased by 357%, 210% and 25% in the 3, 5 and 7 mg/ml hydrogels, respectively. To explain the SAW-OCE results, scanning electron microscope was also performed. The results confirmed the increase in elastic modulus and viscosity of the hydrogels, respectively, arose from increased fiber density and force-dependent unbinding of bonds between collagen fibers. This study reveals the influence of cell-matrix interactions on the viscoelastic properties of corneal stromal models and can provide quantitative guidance for mechanobiological investigations which require collagen ECM with tuneable viscoelastic properties.
Collapse
Affiliation(s)
- Yilong Zhang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kanheng Zhou
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhengshuyi Feng
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kairui Feng
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Yubo Ji
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
5
|
Exploring Interactions between Primary Hepatocytes and Non-Parenchymal Cells on Physiological and Pathological Liver Stiffness. BIOLOGY 2021; 10:biology10050408. [PMID: 34063016 PMCID: PMC8147966 DOI: 10.3390/biology10050408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Chronic liver disease is characterized by progressive hepatic fibrosis leading to the formation of cirrhosis irrespective of the etiology with no effective treatment currently available. Liver stiffness (LS) is currently the best clinical predictor of this fibrosis progression irrespective of the cause of the disease. However, it is not well understood how does LS regulate the critical hepatocytes–non parenchymal cell interactions. We here present, to the best of our knowledge, the first analyses of the impact of physiological and pathological stiffness on hepatocytes–non parenchymal cell interaction. Our findings indicate the role of stiffness in regulating the hepatocytes interactions with NPCs necessary for maintenance of hepatocytes function. Abstract Chronic liver disease is characterized by progressive hepatic fibrosis leading to the formation of cirrhosis irrespective of the etiology with no effective treatment currently available. Liver stiffness (LS) is currently the best clinical predictor of this fibrosis progression irrespective of the etiology. LS and hepatocytes-nonparenchymal cells (NPC) interactions are two variables known to be important in regulating hepatic function during liver fibrosis, but little is known about the interplay of these cues. Here, we use polydimethyl siloxane (PDMS) based substrates with tunable mechanical properties to study how cell–cell interaction and stiffness regulates hepatocytes function. Specifically, primary rat hepatocytes were cocultured with NIH-3T3 fibroblasts on soft (2 kPa) and stiff substrates that recreates physiologic (2 kPa) and cirrhotic liver stiffness (55 kPa). Urea synthesis by primary hepatocytes depended on the presence of fibroblast and was independent of the substrate stiffness. However, albumin synthesis and Cytochrome P450 enzyme activity increased in hepatocytes on soft substrates and when in coculture with a fibroblast. Western blot analysis of hepatic markers, E-cadherin, confirmed that hepatocytes on soft substrates in coculture promoted better maintenance of the hepatic phenotype. These findings indicate the role of stiffness in regulating the hepatocytes interactions with NPCs necessary for maintenance of hepatocytes function.
Collapse
|
6
|
Zhang D, Li C, Huang Z. Relaxation time constant based optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960233. [PMID: 32166913 DOI: 10.1002/jbio.201960233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
This study aimed at visualizing relative relaxation time constant (RTC) in soft tissue by using optical coherence elastography (OCE). We proposed a forced vibration model as a theoretical base to express RTC using axial gradient of periodic vibration phase captured by phase sensitive optical coherence tomography (PhS-OCT). Validation of the model had been accomplished by experiments with isotropic and double-layered phantoms. A fresh chicken breast sample treated with focused ultrasound was prepared to test performance of the RTC-OCE in real tissue. All results were cross-validated with indentation test and traditional strain-based elastography. This study first utilized RTC mapping in 2D and 3D that covers the information of both elasticity and viscosity. The generated RTC mapping revealed the same mechanical difference internal sample which is correlated with conventional strain mapping. RTC mapping is potentially to be served as new biomarker for disease diagnosis in the future.
Collapse
Affiliation(s)
- Duo Zhang
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
7
|
Jin Z, Zhou Y, Shen M, Wang Y, Lu F, Zhu D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960074. [PMID: 31626371 DOI: 10.1002/jbio.201960074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/21/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The corneal viscoelasticity have great clinical significance, such as the early diagnosis of keratoconus. In this work, an analysis method which utilized the elastic wave velocity, frequency and energy attenuation to assess the corneal viscoelasticity is presented. Using phase-resolved optical coherence tomography, the spatial-temporal displacement map is derived. The phase velocity dispersion curve and center frequency are obtained by transforming the displacement map into the wavenumber-frequency domain through the 2D fast Fourier transform (FFT). The shear modulus is calculated through Rayleigh wave equation using the phase velocity in the high frequency. The normalized energy distribution is plotted by transforming the displacement map into the spatial-frequency domain through the 1D FFT. The energy attenuation coefficient is derived by exponential fitting to calculate the viscous modulus. Different concentrations of tissue-mimicking phantoms and porcine corneas are imaged to validate this method, which demonstrates that the method has the capability to assess the corneal viscoelasticity.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Jin Z, Khazaeinezhad R, Zhu J, Yu J, Qu Y, He Y, Li Y, Gomez Alvarez-Arenas TE, Lu F, Chen Z. In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:6272-6285. [PMID: 31853399 PMCID: PMC6913398 DOI: 10.1364/boe.10.006272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Corneal elasticity can resist elastic deformations under intraocular pressure to maintain normal corneal shape, which has a great influence on corneal refractive function. Elastography can measure tissue elasticity and provide a powerful tool for clinical diagnosis. Air-coupled ultrasound optical coherence elastography (OCE) has been used in the quantification of ex-vivo corneal elasticity. However, in-vivo imaging of the cornea remains a challenge. The 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm was developed to distinguish the in-vivo cornea vibration from the axial eye motion in anesthetized rabbits and visualize the elastic wave propagation clearly. The elastic wave group velocity of in-vivo rabbit cornea was measured to be 5.96 ± 0.55 m/s, which agrees with other studies. The results show the potential of 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm for quantitative in-vivo assessment of corneal elasticity.
Collapse
Affiliation(s)
- Zi Jin
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, Zhejiang, China
- These authors contributed equally to this work
| | - Reza Khazaeinezhad
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
- These authors contributed equally to this work
| | - Jiang Zhu
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| | - Junxiao Yu
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| | - Yueqiao Qu
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| | - Youmin He
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| | - Yan Li
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| | - Tomas E Gomez Alvarez-Arenas
- Institute of Physical and Information Technologies, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, Zhejiang, China
| | - Zhongping Chen
- Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA
| |
Collapse
|