1
|
Guo H, Stueck AE, Doppenberg JB, Chae YS, Tikhomirov AB, Zeng H, Engelse MA, Gala-Lopez BL, Mahadevan-Jansen A, Alwayn IPJ, Locke AK, Hewitt KC. Evaluation of Minimum-to-Severe Global and Macrovesicular Steatosis in Human Liver Specimens: A Portable Ambient Light-Compatible Spectroscopic Probe. JOURNAL OF BIOPHOTONICS 2024:e202400292. [PMID: 39396823 DOI: 10.1002/jbio.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS Hepatic steatosis (HS), particularly macrovesicular steatosis (MaS), influences transplant outcomes. Accurate assessment of MaS is crucial for graft selection. While traditional assessment methods have limitations, non-invasive spectroscopic techniques like Raman and reflectance spectroscopy offer promise. This study aimed to evaluate the efficacy of a portable ambient light-compatible spectroscopic system in assessing global HS and MaS in human liver specimens. METHODS A two-stage approach was employed on thawed snap-frozen human liver specimens under ambient room light: biochemical validation involving a comparison of fat content from Raman and reflectance intensities with triglyceride (TG) quantifications and histopathological validation, contrasting Raman-derived fat content with evaluations by an expert pathologist and a "Positive Pixel Count" algorithm. Raman and reflectance intensities were combined to discern significant (≥ 10%) discrepancies in global HS and MaS. RESULTS The initial set of 16 specimens showed a positive correlation between Raman and reflectance-derived fat content and TG quantifications. The Raman system effectively differentiated minimum-to-severe global and macrovesicular steatosis in the subsequent 66 specimens. A dual-variable prediction algorithm was developed, effectively classifying significant discrepancies (> 10%) between algorithm-estimated global HS and pathologist-estimated MaS. CONCLUSION Our study established the viability and reliability of a portable spectroscopic system for non-invasive HS and MaS assessment in human liver specimens. The compatibility with ambient light conditions and the ability to address limitations of previous methods marks a significant advancement in this field. By offering promising differentiation between global HS and MaS, our system introduces an innovative approach to real-time and quantitative donor HS assessments. The proposed method holds the promise of refining donor liver assessment during liver recovery and ultimately enhancing transplantation outcomes.
Collapse
Affiliation(s)
- Hao Guo
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
- Department of Medical Physics, Nova Scotia Health Authority, Halifax, Canada
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashley E Stueck
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Jason B Doppenberg
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Yun Suk Chae
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexey B Tikhomirov
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, Canada
| | - Marten A Engelse
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
| | - Ian P J Alwayn
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea K Locke
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin C Hewitt
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
2
|
Khalenkow D, Tormo AD, De Meyst A, Van Der Meeren L, Verduijn J, Rybarczyk J, Vanrompay D, Le Thomas N, Skirtach AG. Chlamydia psittaci infected cell studies by 4Pi Raman and atomic force microscopy. Microscopy (Oxf) 2024; 73:335-342. [PMID: 38527311 DOI: 10.1093/jmicro/dfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Chlamydia psittaci is an avian bacterial pathogen that can cause atypical pneumonia in humans via zoonotic transmission. It is a Gram-negative intracellular bacterium that proliferates inside membrane bound inclusions in the cytoplasm of living eukaryotic cells. The study of such cells with C. psittaci inside without destroying them poses a significant challenge. We demonstrated in this work the utility of a combined multitool approach to analyze such complex samples. Atomic force microscopy was applied to obtain high-resolution images of the surface of infected cells upon entrance of bacteria. Atomic force microscopy scans revealed the morphological changes of the cell membrane of Chlamydia infected cells such as changes in roughness of cell membrane and the presence of micro vesicles. 4Pi Raman microscopy was used to image and probe the molecular composition of intracellular bacteria inside intact cells. Information about the structure of the inclusion produced by C. psittaci was obtained and it was found to have a similar molecular fingerprint as that of an intracellular lipid droplet but with less proteins and unsaturated lipids. The presented approach demonstrates complementarity of various microscopy-based approaches and might be useful for characterization of intracellular bacteria.
Collapse
Affiliation(s)
- Dmitry Khalenkow
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Alejandro Diaz Tormo
- Photonics Research Group, Department of Information Technology, IMEC & Center for Nano-and Biophotonics, Ghent University, Ghent 9000, Belgium
| | - Anne De Meyst
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Louis Van Der Meeren
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Joanna Rybarczyk
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Daisy Vanrompay
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Nicolas Le Thomas
- Photonics Research Group, Department of Information Technology, IMEC & Center for Nano-and Biophotonics, Ghent University, Ghent 9000, Belgium
| | - Andre G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Esposito C, Janneh M, Spaziani S, Calcagno V, Bernardi ML, Iammarino M, Verdone C, Tagliamonte M, Buonaguro L, Pisco M, Aversano L, Cusano A. Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy. Cells 2023; 12:2645. [PMID: 37998378 PMCID: PMC10670489 DOI: 10.3390/cells12222645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We investigated the possibility of using Raman spectroscopy assisted by artificial intelligence methods to identify liver cancer cells and distinguish them from their Non-Tumor counterpart. To this aim, primary liver cells (40 Tumor and 40 Non-Tumor cells) obtained from resected hepatocellular carcinoma (HCC) tumor tissue and the adjacent non-tumor area (negative control) were analyzed by Raman micro-spectroscopy. Preliminarily, the cells were analyzed morphologically and spectrally. Then, three machine learning approaches, including multivariate models and neural networks, were simultaneously investigated and successfully used to analyze the cells' Raman data. The results clearly demonstrate the effectiveness of artificial intelligence (AI)-assisted Raman spectroscopy for Tumor cell classification and prediction with an accuracy of nearly 90% of correct predictions on a single spectrum.
Collapse
Affiliation(s)
- Concetta Esposito
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Mohammed Janneh
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Sara Spaziani
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Vincenzo Calcagno
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Mario Luca Bernardi
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Martina Iammarino
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Chiara Verdone
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Maria Tagliamonte
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- National Cancer Institute-IRCCS “Pascale”, Via Mariano Semmola, 52, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- National Cancer Institute-IRCCS “Pascale”, Via Mariano Semmola, 52, 80131 Napoli, Italy
| | - Marco Pisco
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Lerina Aversano
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| |
Collapse
|
4
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
5
|
Geng Y, Arroyave-Ospina JC, Buist-Homan M, Plantinga J, Olinga P, Reijngoud DJ, Van Vilsteren FGI, Blokzijl H, Kamps JAAM, Moshage H. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro. J Nutr Biochem 2023; 114:109255. [PMID: 36623779 DOI: 10.1016/j.jnutbio.2022.109255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g. oleic acid) protect against lipotoxicity in hepatocytes. However, the effect of oleic acid on other liver cell types, in particular liver sinusoidal endothelial cells (LSECs), is unknown. Human umbilical vein endothelial cells (HUVECs) are often used as a substitute for LSECs, however, because of the unique phenotype of LSECs, HUVECs cannot represent the same biological features as LSECs. In this study, we investigate the effects of oleate and palmitate (the sodium salts of oleic acid and palmitic acid) on primary rat LSECs in comparison to their effects on HUVECs. Oleate induces necrotic cell death in LSECs, but not in HUVECs. Necrotic cell death of LSECs can be prevented by supplementation of 2-stearoylglycerol, which promotes cellular triglyceride (TG) synthesis. Repressing TG synthesis, by knocking down DGAT1 renders HUVECs sensitive to oleate-induced necrotic death. Mechanistically, oleate causes a sharp drop of intracellular ATP level and impairs mitochondrial respiration in LSECs. The combination of oleate and palmitate reverses the toxic effect of oleate in both LSECs and HUVECs. These results indicate that oleate is toxic and its toxicity can be attenuated by stimulating TG synthesis. The toxicity of oleate is characterized by mitochondrial dysfunction and necrotic cell death. Moreover, HUVECs are not suitable as a substitute model for LSECs.
Collapse
Affiliation(s)
- Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josée Plantinga
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I Van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Gao F, Lu DC, Zheng TL, Geng S, Sha JC, Huang OY, Tang LJ, Zhu PW, Li YY, Chen LL, Targher G, Byrne CD, Huang ZF, Zheng MH. Fully connected neural network-based serum surface-enhanced Raman spectroscopy accurately identifies non-alcoholic steatohepatitis. Hepatol Int 2022; 17:339-349. [PMID: 36369430 PMCID: PMC9651904 DOI: 10.1007/s12072-022-10444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND/PURPOSE OF THE STUDY There is a need to find a standardized and low-risk diagnostic tool that can non-invasively detect non-alcoholic steatohepatitis (NASH). Surface enhanced Raman spectroscopy (SERS), which is a technique combining Raman spectroscopy (RS) with nanotechnology, has recently received considerable attention due to its potential for improving medical diagnostics. We aimed to investigate combining SERS and neural network approaches, using a liver biopsy dataset to develop and validate a new diagnostic model for non-invasively identifying NASH. METHODS Silver nanoparticles as the SERS-active nanostructures were mixed with blood serum to enhance the Raman scattering signals. The spectral data set was used to train the NASH classification model by a neural network primarily consisting of a fully connected residual module. RESULTS Data on 261 Chinese individuals with biopsy-proven NAFLD were included and a prediction model for NASH was built based on SERS spectra and neural network approaches. The model yielded an AUROC of 0.83 (95% confidence interval [CI] 0.70-0.92) in the validation set, which was better than AUROCs of both serum CK-18-M30 levels (AUROC 0.63, 95% CI 0.48-0.76, p = 0.044) and the HAIR score (AUROC 0.65, 95% CI 0.51-0.77, p = 0.040). Subgroup analyses showed that the model performed well in different patient subgroups. CONCLUSIONS Fully connected neural network-based serum SERS analysis is a rapid and practical tool for the non-invasive identification of NASH. The online calculator website for the estimated risk of NASH is freely available to healthcare providers and researchers ( http://www.pan-chess.cn/calculator/RAMAN_score ).
Collapse
Affiliation(s)
- Feng Gao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - De-Chan Lu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350000, China
| | - Tian-Lei Zheng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Cheng Sha
- Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ou-Yang Huang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Yang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Li Chen
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Zu-Fang Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350000, China.
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Xu Y, Hou X, Zhu Q, Mao S, Ren J, Lin J, Xu N. Phenotype Identification of HeLa Cells Knockout CDK6 Gene Based on Label-Free Raman Imaging. Anal Chem 2022; 94:8890-8898. [PMID: 35704426 DOI: 10.1021/acs.analchem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying cell phenotypes is essential for understanding the function of biological macromolecules and molecular biology. We developed a noninvasive, label-free, single-cell Raman imaging analysis platform to distinguish between the cell phenotypes of the HeLa cell wild type (WT) and cyclin-dependent kinase 6 (CDK6) gene knockout (KO) type. Via large-scale Raman spectral and imaging analysis, two phenotypes of the HeLa cells were distinguished by their intrinsic biochemical profiles. A significant difference was found between the two cell lines: large lipid droplets formed in the knockout HeLa cells but were not observed in the WT cells, which was confirmed by Oil Red O staining. The band ratio of the Raman spectrum of saturated/unsaturated fatty acids was identified as the Raman spectral marker for HeLa cell WT or gene knockout type differentiation. The interaction between organelles involved in lipid metabolism was revealed by Raman imaging and Lorentz fitting, where the distribution intensity of the mitochondria and the endoplasmic reticulum membrane decreased. At the same time, lysosomes increased after the CDK6 gene knockout. The parameters obtained from Raman spectroscopy are based on hierarchical cluster analysis and one-way ANOVA, enabling highly accurate cell classification.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Qiaoqiao Zhu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Shijie Mao
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Jie Ren
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Jidong Lin
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| |
Collapse
|
8
|
Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cell Mol Life Sci 2021; 79:52. [PMID: 34936035 PMCID: PMC8739296 DOI: 10.1007/s00018-021-04058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Abstract
Eosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.
Collapse
|
9
|
Potcoava MC, Futia GL, Gibson EA, Schlaepfer IR. Lipid profiling using Raman and a modified support vector machine algorithm. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2021; 52:1910-1922. [PMID: 35814195 PMCID: PMC9269992 DOI: 10.1002/jrs.6238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Lipid droplets are dynamic organelles that play important cellular roles. They are composed of a phospholipid membrane and a core of triglycerides and sterol esters. Fatty acids have important roles in phospholipid membrane formation, signaling, and synthesis of triglycerides as energy storage. Better non-invasive tools for profiling and measuring cellular lipids are needed. Here we demonstrate the potential of Raman spectroscopy to determine with high accuracy the composition changes of the fatty acids and cholesterol found in the lipid droplets of prostate cancer cells treated with various fatty acids. The methodology uses a modified least squares fitting (LSF) routine that uses highly discriminatory wavenumbers between the fatty acids present in the sample using a support vector machine algorithm. Using this new LSF routine, Raman micro-spectroscopy can become a better non-invasive tool for profiling and measuring fatty acids and cholesterol for cancer biology.
Collapse
Affiliation(s)
- Mariana C. Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gregory L. Futia
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
10
|
Ma C, Zhang L, He T, Cao H, Ren X, Ma C, Yang J, Huang R, Pan G. Single cell Raman spectroscopy to identify different stages of proliferating human hepatocytes for cell therapy. Stem Cell Res Ther 2021; 12:555. [PMID: 34717753 PMCID: PMC8556950 DOI: 10.1186/s13287-021-02619-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cell therapy provides hope for treatment of advanced liver failure. Proliferating human hepatocytes (ProliHHs) were derived from primary human hepatocytes (PHH) and as potential alternative for cell therapy in liver diseases. Due to the continuous decline of mature hepatic genes and increase of progenitor like genes during ProliHHs expanding, it is challenge to monitor the critical changes of the whole process. Raman microspectroscopy is a noninvasive, label free analytical technique with high sensitivity capacity. In this study, we evaluated the potential and feasibility to identify ProliHHs from PHH with Raman spectroscopy. Methods Raman spectra were collected at least 600 single spectrum for PHH and ProliHHs at different stages (Passage 1 to Passage 4). Linear discriminant analysis and a two-layer machine learning model were used to analyze the Raman spectroscopy data. Significant differences in Raman bands were validated by the associated conventional kits. Results Linear discriminant analysis successfully classified ProliHHs at different stages and PHH. A two-layer machine learning model was established and the overall accuracy was at 84.6%. Significant differences in Raman bands have been found within different ProliHHs cell groups, especially changes at 1003 cm−1, 1206 cm−1 and 1440 cm−1. These changes were linked with reactive oxygen species, hydroxyproline and triglyceride levels in ProliHHs, and the hypothesis were consistent with the corresponding assay results. Conclusions In brief, Raman spectroscopy was successfully employed to identify different stages of ProliHHs during dedifferentiation process. The approach can simultaneously trace multiple changes of cellular components from somatic cells to progenitor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02619-9.
Collapse
Affiliation(s)
- Chen Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Science, Beijing, China
| | - Ting He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Huiying Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongzhao Ren
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiale Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Pettinato G, Coughlan MF, Zhang X, Chen L, Khan U, Glyavina M, Sheil CJ, Upputuri PK, Zakharov YN, Vitkin E, D’Assoro AB, Fisher RA, Itzkan I, Zhang L, Qiu L, Perelman LT. Spectroscopic label-free microscopy of changes in live cell chromatin and biochemical composition in transplantable organoids. SCIENCE ADVANCES 2021; 7:7/34/eabj2800. [PMID: 34407934 PMCID: PMC8373132 DOI: 10.1126/sciadv.abj2800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 02/01/2023]
Abstract
Organoids formed from human induced pluripotent stem cells (hiPSCs) could be a limitless source of functional tissue for transplantations in many organs. Unfortunately, fine-tuning differentiation protocols to form large quantities of hiPSC organoids in a controlled, scalable, and reproducible manner is quite difficult and often takes a very long time. Recently, we introduced a new approach of rapid organoid formation from dissociated hiPSCs and endothelial cells using microfabricated cell-repellent microwell arrays. This approach, when combined with real-time label-free Raman spectroscopy of biochemical composition changes and confocal light scattering spectroscopic microscopy of chromatin transition, allows for monitoring live differentiating organoids without the need to sacrifice a sample, substantially shortening the time of protocol fine-tuning. We used this approach to both culture and monitor homogeneous liver organoids that have the main functional features of the human liver and which could be used for cell transplantation liver therapy in humans.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Mark F. Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Liming Chen
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Maria Glyavina
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Conor J. Sheil
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Paul K. Upputuri
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Yuri N. Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Edward Vitkin
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | | | - Robert A. Fisher
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Irving Itzkan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| | - Lev T. Perelman
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| |
Collapse
|
12
|
Raman Study on Lipid Droplets in Hepatic Cells Co-Cultured with Fatty Acids. Int J Mol Sci 2021; 22:ijms22147378. [PMID: 34298998 PMCID: PMC8307330 DOI: 10.3390/ijms22147378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate molecular compositions of lipid droplets changing in live hepatic cells stimulated with major fatty acids in the human body, i.e., palmitic, stearic, oleic, and linoleic acids. HepG2 cells were used as the model hepatic cells. Morphological changes of lipid droplets were observed by optical microscopy and transmission electron microscopy (TEM) during co-cultivation with fatty acids up to 5 days. The compositional changes in the fatty chains included in the lipid droplets were analyzed via Raman spectroscopy and chemometrics. The growth curves of the cells indicated that palmitic, stearic, and linoleic acids induced cell death in HepG2 cells, but oleic acid did not. Microscopic observations suggested that the rates of fat accumulation were high for oleic and linoleic acids, but low for palmitic and stearic acids. Raman analysis indicated that linoleic fatty chains taken into the cells are modified into oleic fatty chains. These results suggest that the signaling pathway of cell death is independent of fat stimulations. Moreover, these results suggest that hepatic cells have a high affinity for linoleic acid, but linoleic acid induces cell death in these cells. This may be one of the causes of inflammation in nonalcoholic fatty liver disease (NAFLD).
Collapse
|
13
|
Matuszyk E, Adamczyk A, Radwan B, Pieczara A, Szcześniak P, Mlynarski J, Kamińska K, Baranska M. Multiplex Raman imaging of organelles in endothelial cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119658. [PMID: 33744837 DOI: 10.1016/j.saa.2021.119658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Raman imaging using molecular reporters is a relatively new approach in subcellular investigations. It enables the visualization of organelles in cells with better selectivity and sensitivity compared to the label-free approach. Essentially Raman reporters possess in their structure an alkyne molecular group that can be selectively identified in the spectral region silent for biomolecules, hence facilitate the localization of individual organelles. The aim of this work is to visualize the main cell organelles in endothelial cells (HMEC-1) using established reporters (EdU and MitoBADY), but also to test a new one, namely falcarinol, which exhibits lipophilic properties. Moreover, we tested the possibility to use Raman reporters as a probe to detect changes in distribution of certain organelles after induced endothelial dysfunction (ED) in in vitro models. In both cases, induced ED is characterized by the formation of lipid droplets in the cells, which is why a good tool for the detection of lipid-rich organelles is so important in these studies. Two-dimensional Raman images were obtained, visualizing the distribution of selected organic compounds in the cell, such as proteins, lipids, and nucleic acids. Additionally, the distribution of EdU, MitoBADY and falcarinol in endothelial cells (ECs) was determined. Moreover, we highlight some drawback of established Raman reporter and the need for testing them in various physiological state of the cell.
Collapse
Affiliation(s)
- Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - Katarzyna Kamińska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
14
|
Tott S, Grosicki M, Glowacz J, Mohaissen T, Wojnar-Lason K, Chlopicki S, Baranska M. Raman imaging-based phenotyping of murine primary endothelial cells to identify disease-associated biochemical alterations. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166180. [PMID: 34048923 DOI: 10.1016/j.bbadis.2021.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Raman spectroscopy is successfully becoming an analytical tool used to characterize alterations in the biochemical composition of cells. In this work, we identify the features of Raman spectra of murine primary endothelial cells (EC) isolated from lungs, heart, liver, brain, kidney and aorta of normal mice, as well as from heart, lung and liver in a murine model of heart failure (HF) in Tgαq*44 mice. Primary cells were measured in suspension immediately after their isolation. Raman images showed that isolated primary EC were elliptical or circular, and did not show organ-specific spectral features for any of the studied organ, i.e. lungs, heart, liver, brain, kidney and aorta. Principal Component Analysis pairwise analysis of primary endothelial cells from FVB mice and Tgαq*44 mice revealed an increased protein content in EC isolated from the heart and increased lipid content in EC isolated from the lung in Tgαq*44 mice. No significant differences were found in the EC isolated from the liver using the same chemometric procedure. To our knowledge, this is the first report in which Raman spectroscopy has been used to characterize the biochemical phenotype of primary murine EC with developing HF. This pilot study shows that Raman-based analysis of freshly isolated primary EC did not revealed organ-specific features, however disease-associated changes were found in the coronary and pulmonary EC in the early stage of heart failure in Tgαq*44 mice.
Collapse
Affiliation(s)
- Szymon Tott
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Marek Grosicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Jacek Glowacz
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688 Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|
15
|
Sugiyama T, Hobro AJ, Pavillon N, Umakoshi T, Verma P, Smith N. Label-free Raman mapping of saturated and unsaturated fatty acid uptake, storage, and return toward baseline levels in macrophages. Analyst 2021; 146:1268-1280. [PMID: 33346264 DOI: 10.1039/d0an02077j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophage uptake and metabolism of fatty acids is involved in a large number of important biological pathways including immune activation and regulation of macrophages, as well as pathological conditions including obesity, atherosclerosis, and others lifestyle diseases. There are few methods available to directly probe both the uptake and later redistribution/metabolism of fatty acids within living cells as well as the potential changes induced within the cells themselves. We use Raman imaging and analysis to evaluate the effects of different fatty acids following their uptake in macrophages. The label-free nature of the methods means that we can evaluate the fatty acid dynamics without modifying endogenous cellular behavior and metabolism.
Collapse
Affiliation(s)
- Takeshi Sugiyama
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Radwan B, Adamczyk A, Tott S, Czamara K, Kaminska K, Matuszyk E, Baranska M. Labeled vs. Label-Free Raman Imaging of Lipids in Endothelial Cells of Various Origins. Molecules 2020; 25:molecules25235752. [PMID: 33291234 PMCID: PMC7731394 DOI: 10.3390/molecules25235752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/24/2023] Open
Abstract
Endothelial cells (EC) constitute a single layer of the lining of blood vessels and play an important role in maintaining cardiovascular homeostasis. Endothelial dysfunction has been recognized as a primary or secondary cause of many diseases and it manifests itself, among others, by increased lipid content or a change in the lipid composition in the EC. Therefore, the analysis of cellular lipids is crucial to understand the mechanisms of disease development. Tumor necrosis factor alpha (TNF-α)-induced inflammation of EC alters the lipid content of cells, which can be detected by Raman spectroscopy. By default, lipid detection is carried out in a label-free manner, and these compounds are recognized based on their spectral profile characteristics. We consider (3S,3'S)-astaxanthin (AXT), a natural dye with a characteristic resonance spectrum, as a new Raman probe for the detection of lipids in the EC of various vascular beds, i.e., the aorta, brain and heart. AXT colocalizes with lipids in cells, enabling imaging of lipid-rich cellular components in a time-dependent manner using laser power 10 times lower than that commonly used to measure biological samples. The results show that AXT can be used to study lipids distribution in EC at various locations, suggesting its use as a universal probe for studying cellular lipids using Raman spectroscopy. The use of labeled Raman imaging of lipids in the EC of various organs could contribute to their easier identification and to a better understanding of the development and progression of various vascular diseases, and it could also potentially improve their diagnosis and treatment.
Collapse
Affiliation(s)
- Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Adriana Adamczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Szymon Tott
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
| | - Katarzyna Kaminska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
- Correspondence: (E.M.); (M.B.)
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (B.R.); (A.A.); (S.T.); (K.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland;
- Correspondence: (E.M.); (M.B.)
| |
Collapse
|
17
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
19
|
Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J. Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues. JOURNAL OF BIOPHOTONICS 2020; 13:e202000129. [PMID: 32475014 DOI: 10.1002/jbio.202000129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.
Collapse
Affiliation(s)
- Georgette Azemtsop Matanfack
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Clara Stiebing
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| |
Collapse
|
20
|
Gieroba B, Sroka-Bartnicka A, Kazimierczak P, Kalisz G, Pieta IS, Nowakowski R, Pisarek M, Przekora A. Effect of Gelation Temperature on the Molecular Structure and Physicochemical Properties of the Curdlan Matrix: Spectroscopic and Microscopic Analyses. Int J Mol Sci 2020; 21:ijms21176154. [PMID: 32858980 PMCID: PMC7504023 DOI: 10.3390/ijms21176154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 01/31/2023] Open
Abstract
In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-β-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-β-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-β-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: or (A.S.-B.); (A.P.); Tel.: +48-81448-7225 (A.S.-B.); +48-81448-7026 (A.P.)
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (G.K.)
| | - Izabela S. Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Marcin Pisarek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (I.S.P.); (R.N.); (M.P.)
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: or (A.S.-B.); (A.P.); Tel.: +48-81448-7225 (A.S.-B.); +48-81448-7026 (A.P.)
| |
Collapse
|
21
|
Zapotoczny B, Braet F, Wisse E, Lekka M, Szymonski M. Biophysical nanocharacterization of liver sinusoidal endothelial cells through atomic force microscopy. Biophys Rev 2020; 12:625-636. [PMID: 32424787 PMCID: PMC7311612 DOI: 10.1007/s12551-020-00699-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
The structural-functional hallmark of the liver sinusoidal endothelium is the presence of fenestrae grouped in sieve plates. Fenestrae are open membrane bound pores supported by a (sub)membranous cytoskeletal lattice. Changes in number and diameter of fenestrae alter bidirectional transport between the sinusoidal blood and the hepatocytes. Their physiological relevance has been shown in different liver disease models. Although the structural organization of fenestrae has been well documented using different electron microscopy approaches, the dynamic nature of those pores remained an enigma until the recent developments in the research field of four dimensional (4-D) AFM. In this contribution we highlight how AFM as a biophysical nanocharacterization tool enhanced our understanding in the dynamic behaviour of liver sinusoidal endothelial fenestrae. Different AFM probing approaches, including spectroscopy, enabled mapping of topography and nanomechanical properties at unprecedented resolution under live cell imaging conditions. This dynamic biophysical characterization approach provided us with novel information on the 'short' life-span, formation, disappearance and closure of hepatic fenestrae. These observations are briefly reviewed against the existing literature.
Collapse
Affiliation(s)
| | - Filip Braet
- Faculty of Medicine and Health, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia.,Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eddie Wisse
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, Maastricht, Netherlands
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - Marek Szymonski
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
Matuszyk E, Sierka E, Rodewald M, Bae H, Meyer T, Kus E, Chlopicki S, Schmitt M, Popp J, Baranska M. Differential response of liver sinusoidal endothelial cells and hepatocytes to oleic and palmitic acid revealed by Raman and CARS imaging. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165763. [PMID: 32169502 DOI: 10.1016/j.bbadis.2020.165763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Excess circulating fatty acids contribute to endothelial dysfunction that subsequently aggravates the metabolic conditions such as fatty liver diseases. However, the exact mechanism of this event is not fully understood, and the investigation on the effect of a direct exposure to fatty acids together with their subsequent fate is of interest. In this work we employed a chemically specific and label-free techniques such as Raman and CARS microscopies, to investigate the process of lipid droplets (LDs) formation in endothelial cells and hepatocytes after exposure to oleic and palmitic acid. We aimed to observe the changes in the composition of LDs associated with metabolism and degradation of lipids. We were able to characterize the diversity in the formation of LDs in endothelium as compared to hepatocytes, as well as the differences in the formation of LDs and degradation manner with respect to the used fatty acid. Thus, for the first time the spectral characteristics of LDs formed in endothelial cells after incubation with oleic and palmitic acid is presented, including the time-dependent changes in their chemical composition.
Collapse
Affiliation(s)
- Ewelina Matuszyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Ewa Sierka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Marko Rodewald
- Institute of Physical Chemistry (IPC), Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany
| | - Hyeonsoo Bae
- Institute of Physical Chemistry (IPC), Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany
| | - Tobias Meyer
- Institute of Physical Chemistry (IPC), Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, Albert-Einstein-Str. 9, Jena, Germany
| | - Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC), Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC), Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Helmholtzweg 4, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, Albert-Einstein-Str. 9, Jena, Germany.
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|