1
|
Smirnov IV, Usatova VS, Berestovoy MA, Fedotov AB, Lanin AA, Belousov VV, Sukhorukov GB. Long-term tracing of individual human neural cells using multiphoton microscopy and photoconvertible polymer capsules. J R Soc Interface 2024; 21:20240497. [PMID: 39471872 PMCID: PMC11521627 DOI: 10.1098/rsif.2024.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference. In this study, we present a novel method for labelling and tracking neural cells using cell-impregnatable photoconvertible polyelectrolyte microcapsules. These capsules demonstrated low cytotoxicity with no effect on the differentiation ability of the neural cells, maintained a high level of fluorescent signal and ability for tracing individual neural cells for over 7 days. The capsules modified with rhodamine- and fluorescein-based dyes were demonstrated to undergo photoconversion by both one- and two-photon lasers while being internalized by neural cells. The finding gives the possibility to select individual capsules inside multicellular structures like spheroids and tissues and alternate their fluorescent appearance. Thus, we can track individual cell paths in complex systems. This new method offers a promising alternative for studying neural cells' long-term behaviour and migration in complex systems such as three-dimensional cellular populations.
Collapse
Affiliation(s)
- Ivan V. Smirnov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
| | - Veronika S. Usatova
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Mikhail A. Berestovoy
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
| | - Andrei B. Fedotov
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Aleksandr A. Lanin
- Physics Department, Lomonosov Moscow State University, Moscow119992, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
| | - Vsevolod V. Belousov
- Federal Center for Brain and Neurotechnologies, Federal Medical-Biological Agency, Moscow117997, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow119334, Russia
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow121205, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow143025, Russia
- School of Engineering and Materials Science, Queen Mary University of London, LondonE1 4NS, UK
| |
Collapse
|
2
|
Chebotarev AS, Ledyaeva VS, Patsap OI, Ivanov AA, Fedotov AB, Belousov VV, Shokhina AG, Lanin AA. Multimodal label-free imaging of murine hepatocellular carcinoma with a subcellular resolution. JOURNAL OF BIOPHOTONICS 2023; 16:e202300228. [PMID: 37679905 DOI: 10.1002/jbio.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window. Various grades of HCC are examined revealing fibrosis, steatosis, liver cell dysplasia, activation of HSCs and hepatocyte necrosis, that shows a great ability of multimodal label-free microscopy to intravital visualization of liver pathology development.
Collapse
Affiliation(s)
- Artem S Chebotarev
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | | | - Olga I Patsap
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
| | - Anatoli A Ivanov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Andrei B Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Arina G Shokhina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, Moscow, Russia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Aleksandr A Lanin
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| |
Collapse
|
3
|
Pochechuev MS, Bilan DS, Fedotov IV, Kelmanson IV, Solotenkov MA, Stepanov EA, Kotova DA, Ivanova AD, Kostyuk AI, Raevskii RI, Lanin AA, Fedotov AB, Belousov VV, Zheltikov AM. Real-time fiber-optic recording of acute-ischemic-stroke signatures. JOURNAL OF BIOPHOTONICS 2022; 15:e202200050. [PMID: 35654757 DOI: 10.1002/jbio.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real-time fiber-optic recording of stroke-induced hydrogen peroxide and pH transients in ischemia-affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time-resolved study of oxidative-stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength-multiplex forward-propagation channel for a spatially localized, dual-pathway excitation of genetically encoded fluorescence-protein sensors along with a back-propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber-probe-collected fluorescence return provides means for a high-fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real-time detection of stroke-induced transients and significantly reducing measurement uncertainties in in vivo acute-stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models.
Collapse
Affiliation(s)
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ilya V Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- Russian Quantum Center, Skolkovo, Moscow, Russia
| | - Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim A Solotenkov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny A Stepanov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Roman I Raevskii
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A Lanin
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow, Russia
| | - Andrei B Fedotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Moscow, Russia
- National University of Science and Technology "MISiS", Moscow, Russia
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
| | - Aleksei M Zheltikov
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
5
|
Improved One- and Multiple-Photon Excited Photoluminescence from Cd 2+-Doped CsPbBr 3 Perovskite NCs. NANOMATERIALS 2022; 12:nano12010151. [PMID: 35010101 PMCID: PMC8746976 DOI: 10.3390/nano12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Metal halide perovskite nanocrystals (NCs) attract much attention for light-emitting applications due to their exceptional optical properties. More recently, perovskite NCs have begun to be considered a promising material for nonlinear optical applications. Numerous strategies have recently been developed to improve the properties of metal halide perovskite NCs. Among them, B-site doping is one of the most promising ways to enhance their brightness and stability. However, there is a lack of study of the influence of B-site doping on the nonlinear optical properties of inorganic perovskite NCs. Here, we demonstrate that Cd2+ doping simultaneously improves both the linear (higher photoluminescence quantum yield, larger exciton binding energy, reduced trap states density, and faster radiative recombination) and nonlinear (higher two- and three-photon absorption cross-sections) optical properties of CsPbBr3 NCs. Cd2+ doping results in a two-photon absorption cross-section, reaching 2.6 × 106 Goeppert-Mayer (GM), which is among the highest reported for CsPbBr3 NCs.
Collapse
|
6
|
Gao K, Liu Y, Qiao W, Song Y, Zhao X, Wang A, Li T. Wavelength-tunable 1104 nm nonlinear amplifier loop mirror laser based on a polarization-maintaining double-cladding fiber. OPTICS LETTERS 2022; 47:5-8. [PMID: 34951868 DOI: 10.1364/ol.445683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
An ytterbium-doped stretched-pulse mode-locked fiber oscillator was fabricated by applying a nonlinear amplifier loop mirror (NALM). The fiber cavity was built using a large-mode area (LMA) polarization-maintaining (PM) double-cladding (DC) fiber. The central wavelength of the generated 24.7 MHz laser can be modified from 1034 to 1104 nm by tuning the intra-cavity loss. The output power of this laser with a wavelength of 1104 nm at the transmission and reflection ports is 7.61 and 0.33 mW, respectively. The corresponding compressed pulse durations are 192 and 187 fs, which are 1.54 and 1.02 times the Fourier-transform-limited pulse duration, respectively.
Collapse
|
7
|
Kelmanson IV, Shokhina AG, Kotova DA, Pochechuev MS, Ivanova AD, Kostyuk AI, Panova AS, Borodinova AA, Solotenkov MA, Stepanov EA, Raevskii RI, Moshchenko AA, Pak VV, Ermakova YG, van Belle GJC, Tarabykin V, Balaban PM, Fedotov IV, Fedotov AB, Conrad M, Bogeski I, Katschinski DM, Doeppner TR, Bähr M, Zheltikov AM, Belousov VV, Bilan DS. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 2021; 48:102178. [PMID: 34773835 PMCID: PMC8600061 DOI: 10.1016/j.redox.2021.102178] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo.
Collapse
Affiliation(s)
- Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Arina G Shokhina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Matvei S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Biological Department, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anastasia A Borodinova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maxim A Solotenkov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Evgeny A Stepanov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Roman I Raevskii
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Valeriy V Pak
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia G Ermakova
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Gijsbert J C van Belle
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Viktor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Ilya V Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Andrei B Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia
| | - Marcus Conrad
- Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Ivan Bogeski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Dörthe M Katschinski
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany; Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Istanbul, Turkey; Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia; Russian Quantum Center, Skolkovo, Moscow Region, 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, 420126, Russia; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
8
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Smolyarova DD, Podgorny OV, Bilan DS, Belousov VV. A guide to genetically encoded tools for the study of H 2 O 2. FEBS J 2021; 289:5382-5395. [PMID: 34173331 DOI: 10.1111/febs.16088] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023]
Abstract
Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell; therefore, the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.
Collapse
Affiliation(s)
- Daria D Smolyarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Russia
| | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia.,Institute for Cardiovascular Physiology, Georg August University Göttingen, Germany
| |
Collapse
|
10
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Zheltikov AM. Light-induced uncertainty and information limits of optical neural recording. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119351. [PMID: 33486433 DOI: 10.1016/j.saa.2020.119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cutting-edge methods of laser microscopy combined with fluorescent protein engineering and spectral analysis provide a unique resource for high-resolution neuroimaging, enabling a high-fidelity, high-contrast detection of fine structural details of neural cells and intracellular compartments. In addition to their extraordinary imaging abilities in real space, such methods can help resolve the neural states in a multidimensional space of neural responses whereby individual neurons and neural populations encode information on external stimuli. This study shows, however, that laser-induced biochemical processes in neural cells can give rise to an uncertainty of neural states, setting an upper bound on the information that optical measurements can provide on neural states, neural encodings, and neural dynamics. Comparison of absorbed laser power with the native biochemical energy budget of neuronal firing suggests that each readout photon in optical recording comes at a cost of precision of neural encoding and a loss of information encoded by the neural response. A quantitative measure for such a measurement-induced neural uncertainty can be defined, as this study shows, in terms of the Fisher information, relating the lower bound of this uncertainty to the loss of the Shannon information capacity of neural states.
Collapse
Affiliation(s)
- Aleksei M Zheltikov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992, Russia; Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA; Russian Quantum Center, Skolkovo, Moscow Region 143025, Russia; Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| |
Collapse
|
12
|
Chebotarev AS, Pochechuev MS, Lanin AA, Kelmanson IV, Kotova DA, Fetisova ES, Panova AS, Bilan DS, Fedotov AB, Belousov VV, Zheltikov AM. Enhanced-contrast two-photon optogenetic pH sensing and pH-resolved brain imaging. JOURNAL OF BIOPHOTONICS 2021; 14:e202000301. [PMID: 33205577 DOI: 10.1002/jbio.202000301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways-via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.
Collapse
Affiliation(s)
- Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Matvei S Pochechuev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Moscow, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, Russia
| | - Ilya V Kelmanson
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Fetisova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrei B Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Moscow, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, Russia
- National University of Science and Technology "MISiS,", Moscow, Russia
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Moscow, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, Kazan, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
| |
Collapse
|