1
|
Stewart CF, McGoldrick P, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Microbial reduction of prebagged human plasma using 405 nm light and its effects on coagulation factors. AMB Express 2024; 14:66. [PMID: 38842656 PMCID: PMC11156813 DOI: 10.1186/s13568-024-01725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Preston McGoldrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow, UK.
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Jackson JW, Kaldhone PR, Parunov LA, Stewart CF, Anderson JG, MacGregor SJ, Maclean M, Atreya CD. Human platelet concentrates treated with microbicidal 405 nm light retain hemostasis activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112922. [PMID: 38677260 DOI: 10.1016/j.jphotobiol.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Chemical and UV light-based pathogen reduction technologies are currently in use for human platelet concentrates (PCs) to enhance safety from transfusion-transmitted infections. Relative to UV light, 405 nm violet-blue light in the visible spectrum is known to be less harmful. Hence, in this report for the first time, we have assessed the global hemostasis activity of PCs stored in plasma and the activities of six plasma coagulation factors (CFs) as a measure of in vitro hemostatic activity following exposure to the microbicidal 405 nm light. Apheresis PC samples collected from each screened human donor (n = 22) were used for testing of PCs and platelet poor plasma (PPP). Both PCs and PPPs were treated for 5 h with 405 nm light to achieve a previously established microbicidal light dose of 270 J/cm2. Activated partial thromboplastin time and prothrombin time-based potency assays using a coagulation analyzer and hemostatic capacity via Thromboelastography were analyzed. Thromboelastography analysis of the light-treated PCs and plasma present in the PCs showed little difference between the treated and untreated samples. Further, plasma present in the PCs during the light treatment demonstrated a better stability in potency assays for several coagulation factors compared to the plasma alone prepared from PCs first and subjected to the light treatment separately. Overall, PCs stored in plasma treated with 405 nm violet-blue light retain activity for hemostasis.
Collapse
Affiliation(s)
- Joseph W Jackson
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Pravin R Kaldhone
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Leonid A Parunov
- Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK; Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
3
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
4
|
Gierke AM, Hessling M. Photoinactivation by UVA radiation and visible light of Candida auris compared to other fungi. Photochem Photobiol Sci 2024; 23:681-692. [PMID: 38446403 DOI: 10.1007/s43630-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024]
Abstract
In addition to the rising number of patients affected by viruses and bacteria, the number of fungal infections has also been rising over the years. Due to the increase in resistance to various antimycotics, investigations into further disinfection options are important. In this study, two yeasts (Candida auris and Saccharomyces cerevisiae) and a mold (Cladosporium cladosporioides) were irradiated at 365, 400, and 450 nm individually. The resulting log 1 reduction doses were determined and compared with other studies. Furthermore, fluorescence measurements of C. auris were performed to detect possible involved photosensitizers. A roughly exponential photoinactivation was observed for all three fungi and all irradiation wavelengths with higher D90 doses for longer wavelengths. The determined log 1 reduction doses of C. auris and S. cerevisiae converged with increasing wavelength. However, S. cerevisiae was more photosensitive than C. auris for all irradiation wavelengths and is therefore not a suitable C. auris surrogate for photoinactivation experiments. For the mold C. cladosporioides, much higher D90 doses were determined than for both yeasts. Concerning potential photosensitizers, flavins and various porphyrins were detected by fluorescence measurements. By excitation at 365 nm, another, so far unreported fluorophore and potential photosensitizer was also observed. Based on its fluorescence spectrum, we assume it to be thiamine.Graphic abstract.
Collapse
Affiliation(s)
- Anna-Maria Gierke
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany.
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Albert-Einstein-Allee 55, 89081, Ulm, Germany
| |
Collapse
|
5
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
6
|
Jana S, Heaven MR, Dahiya N, Stewart C, Anderson J, MacGregor S, Maclean M, Alayash AI, Atreya C. Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112672. [PMID: 36871490 DOI: 10.1016/j.jphotobiol.2023.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Continued efforts to reduce the risk of transfusion-transmitted infections (TTIs) through blood and blood components led to the development of ultraviolet (UV) light irradiation technologies known as pathogen reduction technologies (PRT) to enhance blood safety. While these PRTs demonstrate germicidal efficiency, it is generally accepted that these photoinactivation techniques have limitations as they employ treatment conditions shown to compromise the quality of the blood components. During ex vivo storage, platelets having mitochondria for energy production suffer most from the consequences of UV irradiation. Recently, application of visible violet-blue light in the 400-470 nm wavelength range has been identified as a relatively more compatible alternative to UV light. Hence, in this report, we evaluated 405 nm light-treated platelets to assess alterations in energy utilization by measuring different mitochondrial bioenergetic parameters, glycolytic flux, and reactive oxygen species (ROS). Furthermore, we employed untargeted data-independent acquisition mass spectrometry to characterize platelet proteomic differences in protein regulation after the light treatment. Overall, our analyses demonstrate that ex vivo treatment of human platelets with antimicrobial 405 nm violet-blue light leads to mitochondrial metabolic reprogramming to survive the treatment, and alters a fraction of platelet proteome.
Collapse
Affiliation(s)
- Sirsendu Jana
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Michael R Heaven
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Neetu Dahiya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Caitlin Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Abdu I Alayash
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Chintamani Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
7
|
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev 2022; 180:114057. [PMID: 34800566 PMCID: PMC8728809 DOI: 10.1016/j.addr.2021.114057] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Sana Mushtaq
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Pakistan
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Stewart CF, Tomb RM, Ralston HJ, Armstrong J, Anderson JG, MacGregor SJ, Atreya CD, Maclean M. Violet-blue 405-nm Light-based Photoinactivation for Pathogen Reduction of Human Plasma Provides Broad Antibacterial Efficacy Without Visible Degradation of Plasma Proteins. Photochem Photobiol 2021; 98:504-512. [PMID: 34935147 DOI: 10.1111/php.13584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma. Human plasma seeded with bacteria at a range of densities (101 -103 , 104 -106 , 107 -108 CFU mL-1 ) was exposed to 360 J cm-2 405-nm light (1 h at 0.1 W cm-2 ), with this fixed dose selected based on the initial analysis of inactivation kinetics. One-dimensional protein mobility analysis and measurement of advanced oxidation protein products (AOPP) was conducted to evaluate compatibility of the antimicrobial dose with plasma proteins and, identify upper levels at which protein degradation can be detected. Broad-spectrum antibacterial efficacy was observed with a fixed treatment of 360 J cm-2 , with 98.9-100% inactivation achieved across all seeding densities for all organisms, except E. coli, which achieved 95.1-100% inactivation. At this dose (360 J cm-2 ), no signs of protein degradation occurred. Overall, 405-nm light shows promise for broad-spectrum bacterial inactivation in blood plasma, while preserving plasma protein integrity.
Collapse
Affiliation(s)
- Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Rachael M Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Heather J Ralston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Jack Armstrong
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|