1
|
Hassanzadeh A, Elyasi SN, Salih S, Abdulkareem SS, Saeed SR. Waveguide Evanescent Field Fluorescence Microscopy Images of Osteoblast Cells: The Effect of Trypsin and Image Processing Using TrackMate. Microsc Res Tech 2025; 88:1326-1334. [PMID: 39745108 DOI: 10.1002/jemt.24766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 11/23/2024] [Indexed: 04/07/2025]
Abstract
Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field. In the current study, we demonstrate that the WEFF microscope is capable of large FOVs with a uniform illumination source and imaging over a very long time period with a simple and inexpensive experimental setup. The interaction of the trypsin with plasma membranes of live osteoblast cells is investigated. To analyze cell images (250 images), instead of relying on manual tracking, which is time-consuming and can introduce numerous errors, we performed image processing using TrackMate to investigate the dynamic response of cells upon exposure to trypsin. This helps to save time and increase the accuracy of the analysis. The powerful tracking and analysis capabilities of the TrackMate plugin in ImageJ are used to automatically detect the cells border and trace each cluster of cells. The reduction in cell area is accompanied by a notable increase in mean intensity, reflecting changes in the intracellular environment. However, the background did not change during the experiment, which proves that the fluorescence material remains attached to the cell membrane and does not leak into the cell medium.
Collapse
Affiliation(s)
- Abdollah Hassanzadeh
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Seyed Navid Elyasi
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Siyamand Salih
- Department of Natural Sciences, Charmo Center for Research, Training and Consultancy, Charmo University, Chamchamal, Kurdistan Region, Iraq
| | | | - Salah Raza Saeed
- Department of Computer Science, Cihan University, Sulaimaniyah, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Samanta K, Ahmad A, Tinguely JC, Ahluwalia BS, Joseph J. Transmission structured illumination microscopy with tunable frequency illumination using tilt mirror assembly. Sci Rep 2023; 13:1453. [PMID: 36702876 PMCID: PMC9879979 DOI: 10.1038/s41598-023-27814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
We present experimental demonstration of tilt-mirror assisted transmission structured illumination microscopy (tSIM) that offers a large field of view super resolution imaging. An assembly of custom-designed tilt-mirrors are employed as the illumination module where the sample is excited with the interference of two beams reflected from the opposite pair of mirror facets. Tunable frequency structured patterns are generated by changing the mirror-tilt angle and the hexagonal-symmetric arrangement is considered for the isotropic resolution in three orientations. Utilizing high numerical aperture (NA) objective in standard SIM provides super-resolution compromising with the field-of-view (FOV). Employing low NA (20X/0.4) objective lens detection, we experimentally demonstrate [Formula: see text] (0.56 mm[Formula: see text]0.35 mm) size single FOV image with [Formula: see text]1.7- and [Formula: see text]2.4-fold resolution improvement (exploiting various illumination by tuning tilt-mirrors) over the diffraction limit. The results are verified both for the fluorescent beads as well as biological samples. The tSIM geometry decouples the illumination and the collection light paths consequently enabling free change of the imaging objective lens without influencing the spatial frequency of the illumination pattern that are defined by the tilt-mirrors. The large and scalable FOV supported by tSIM will find usage for applications where scanning large areas are necessary as in pathology and applications where images must be correlated both in space and time.
Collapse
Affiliation(s)
- Krishnendu Samanta
- grid.417967.a0000 0004 0558 8755Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India ,grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Azeem Ahmad
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Jean-Claude Tinguely
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Balpreet Singh Ahluwalia
- grid.10919.300000000122595234Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsö, Norway
| | - Joby Joseph
- grid.417967.a0000 0004 0558 8755Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India ,grid.417967.a0000 0004 0558 8755Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, 110016 India
| |
Collapse
|
3
|
Jayakumar N, Dullo FT, Dubey V, Ahmad A, Ströhl F, Cauzzo J, Guerreiro EM, Snir O, Skalko-Basnet N, Agarwal K, Ahluwalia BS. Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3421-3436. [PMID: 38144043 PMCID: PMC10741054 DOI: 10.1515/nanoph-2022-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/26/2023]
Abstract
The article elucidates the physical mechanism behind the generation of superior-contrast and high-resolution label-free images using an optical waveguide. Imaging is realized by employing a high index contrast multi-moded waveguide as a partially coherent light source. The modes provide near-field illumination of unlabeled samples, thereby repositioning the higher spatial frequencies of the sample into the far-field. These modes coherently scatter off the sample with different phases and are engineered to have random spatial distributions within the integration time of the camera. This mitigates the coherent speckle noise and enhances the contrast (2-10) × as opposed to other imaging techniques. Besides, the coherent scattering of the different modes gives rise to fluctuations in intensity. The technique demonstrated here is named chip-based Evanescent Light Scattering (cELS). The concepts introduced through this work are described mathematically and the high-contrast image generation process using a multi-moded waveguide as the light source is explained. The article then explores the feasibility of utilizing fluctuations in the captured images along with fluorescence-based techniques, like intensity-fluctuation algorithms, to mitigate poor-contrast and diffraction-limited resolution in the coherent imaging regime. Furthermore, a straight waveguide is demonstrated to have limited angular diversity between its multiple modes and therefore, for isotropic sample illumination, a multiple-arms waveguide geometry is used. The concepts introduced are validated experimentally via high-contrast label-free imaging of weakly scattering nanosized specimens such as extra-cellular vesicles (EVs), liposomes, nanobeads and biological cells such as fixed and live HeLa cells.
Collapse
Affiliation(s)
- Nikhil Jayakumar
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Firehun T. Dullo
- Department of Microsystems and Nanotechnology, SINTEF Digital, Gaustadalleen 23C, 0373Oslo, Norway
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Florian Ströhl
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Jennifer Cauzzo
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø9037, Norway
| | | | - Omri Snir
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Natasa Skalko-Basnet
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø9037, Norway
- Department of Clinical Science, Intervention and Technology, Karolinska Insitute, 17177Stockholm, Sweden
| |
Collapse
|
4
|
Villegas-Hernández LE, Dubey V, Nystad M, Tinguely JC, Coucheron DA, Dullo FT, Priyadarshi A, Acuña S, Ahmad A, Mateos JM, Barmettler G, Ziegler U, Birgisdottir ÅB, Hovd AMK, Fenton KA, Acharya G, Agarwal K, Ahluwalia BS. Chip-based multimodal super-resolution microscopy for histological investigations of cryopreserved tissue sections. LIGHT, SCIENCE & APPLICATIONS 2022; 11:43. [PMID: 35210400 PMCID: PMC8873254 DOI: 10.1038/s41377-022-00731-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Histology involves the observation of structural features in tissues using a microscope. While diffraction-limited optical microscopes are commonly used in histological investigations, their resolving capabilities are insufficient to visualize details at subcellular level. Although a novel set of super-resolution optical microscopy techniques can fulfill the resolution demands in such cases, the system complexity, high operating cost, lack of multi-modality, and low-throughput imaging of these methods limit their wide adoption for histological analysis. In this study, we introduce the photonic chip as a feasible high-throughput microscopy platform for super-resolution imaging of histological samples. Using cryopreserved ultrathin tissue sections of human placenta, mouse kidney, pig heart, and zebrafish eye retina prepared by the Tokuyasu method, we demonstrate diverse imaging capabilities of the photonic chip including total internal reflection fluorescence microscopy, intensity fluctuation-based optical nanoscopy, single-molecule localization microscopy, and correlative light-electron microscopy. Our results validate the photonic chip as a feasible imaging platform for tissue sections and pave the way for the adoption of super-resolution high-throughput multimodal analysis of cryopreserved tissue samples both in research and clinical settings.
Collapse
Affiliation(s)
- Luis E Villegas-Hernández
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - David A Coucheron
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Firehun T Dullo
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Anish Priyadarshi
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Sebastian Acuña
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - José M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Åsa Birna Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Clinical Cardiovascular Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin Karlsson Hovd
- Department of Medical Biology, RNA and Molecular Pathology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristin Andreassen Fenton
- Department of Medical Biology, RNA and Molecular Pathology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ganesh Acharya
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Krishna Agarwal
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Klokkargårdsbakken N-9019, Tromsø, Norway.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Opstad IS, Hansen DH, Acuña S, Ströhl F, Priyadarshi A, Tinguely JC, Dullo FT, Dalmo RA, Seternes T, Ahluwalia BS, Agarwal K. Fluorescence fluctuation-based super-resolution microscopy using multimodal waveguided illumination. OPTICS EXPRESS 2021; 29:23368-23380. [PMID: 34614603 DOI: 10.1364/oe.423809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Photonic chip-based total internal reflection fluorescence microscopy (c-TIRFM) is an emerging technology enabling a large TIRF excitation area decoupled from the detection objective. Additionally, due to the inherent multimodal nature of wide waveguides, it is a convenient platform for introducing temporal fluctuations in the illumination pattern. The fluorescence fluctuation-based nanoscopy technique multiple signal classification algorithm (MUSICAL) does not assume stochastic independence of the emitter emission and can therefore exploit fluctuations arising from other sources, as such multimodal illumination patterns. In this work, we demonstrate and verify the utilization of fluctuations in the illumination for super-resolution imaging using MUSICAL on actin in salmon keratocytes. The resolution improvement was measured to be 2.2-3.6-fold compared to the corresponding conventional images.
Collapse
|