1
|
Tomar A, Engelmann SA, Woods AL, Dunn AK. Non-degenerate two-photon imaging of deep rodent cortex using indocyanine green in the water absorption window. BIOMEDICAL OPTICS EXPRESS 2024; 15:5053-5066. [PMID: 39296386 PMCID: PMC11407249 DOI: 10.1364/boe.520977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024]
Abstract
We present a novel approach for deep vascular imaging in rodent cortex at excitation wavelengths susceptible to water absorption using two-photon microscopy with photons of dissimilar wavelengths. We demonstrate that non-degenerate two-photon excitation (ND-2PE) enables imaging in the water absorption window from 1400-1550 nm using two excitation sources with temporally overlapped pulses at 1300 nm and 1600 nm that straddle the absorption window. We explore the brightness spectra of indocyanine green (ICG) and assess its suitability for imaging in the water absorption window. Further, we demonstrate in vivo imaging of the rodent cortex vascular structure up to 1.2 mm using ND-2PE. Lastly, a comparative analysis of ND-2PE at 1435 nm and single-wavelength, two-photon imaging at 1300 nm and 1435 nm is presented. Our work extends the excitation range for fluorescent dyes to include water absorption regimes and underscores the feasibility of deep two-photon imaging at these wavelengths.
Collapse
Affiliation(s)
- Alankrit Tomar
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
| | - Shaun A Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Aaron L Woods
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Eletrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
2
|
He M, Hickam BP, Harper N, Cushing SK. Experimental upper bounds for resonance-enhanced entangled two-photon absorption cross section of indocyanine green. J Chem Phys 2024; 160:094305. [PMID: 38445732 DOI: 10.1063/5.0193311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Resonant intermediate states have been proposed to increase the efficiency of entangled two-photon absorption (ETPA). Although resonance-enhanced ETPA (r-ETPA) has been demonstrated in atomic systems using bright squeezed vacuum, it has not been studied in organic molecules. We investigate for the first time r-ETPA in an organic molecular dye, indocyanine green (ICG), when excited by broadband entangled photons in near-IR. Similar to many reported virtual state mediated ETPA (v-ETPA) measurements, no r-ETPA signals are measured, with an experimental upper bound for the cross section placed at 6(±2) × 10-23 cm2. In addition, the classical resonance-enhanced two-photon absorption (r-TPA) cross section of ICG at 800 nm is measured for the first time to be 20(±13) GM, where 1 GM equals 10-50 cm4 s, suggesting that having a resonant intermediate state does not significantly enhance two-photon processes in ICG. The spectrotemporally resolved emission signatures of ICG excited by entangled photons are also presented to support this conclusion.
Collapse
Affiliation(s)
- Manni He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Bryce P Hickam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nathan Harper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
3
|
Xu Z, Zhang Z, Deng X, Li J, Jiang Y, Law WC, Yang C, Zhang W, Chen X, Wang K, Wang D, Xu G. Deep-Brain Three-Photon Imaging Enabled by Aggregation-Induced Emission Luminogens with Near-Infrared-III Excitation. ACS NANO 2022; 16:6712-6724. [PMID: 35293713 DOI: 10.1021/acsnano.2c01349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the morphology and hemodynamics of cerebral vasculature at large penetration depths and microscale resolution is fundamentally important to decipher brain diseases. Among the various imaging technologies, three-photon (3P) microscopy is of significance by virtue of its deep-penetrating capability and submicron resolution, which especially benefits in vivo vascular imaging. Aggregation-induced emission luminogens (AIEgens) have been recognized to be extraordinarily powerful as 3P probes. However, systematic studies on the structure-performance relationship of 3P AIEgens have been seldom reported. Herein, a series of AIEgens has been designed and synthesized. By intentionally introducing benzene rings onto electron donors (D) and acceptors (A), the molecular distortion, conjugation strength, and the D-A relationship can be facilely manipulated. Upon encapsulation with DSPE-PEG2000, the optimized AIEgens are successfully applied for 3P microscopy with emission in the far-red/near-infrared-I (NIR-I, 700-950 nm) region under the near-infrared-III (NIR-III, 1600-1870 nm) excitation. Impressively, using mice with an opened skull, vasculature within 1700 μm and a microvessel with a diameter of 2.2 μm in deep mouse brain were clearly visualized. In addition, the hemodynamics of blood vessels were well-characterized. Thus, this work not only proposes a molecular design strategy of 3P AIEgens but also promotes the performance of 3P imaging in cerebral vasculature.
Collapse
Affiliation(s)
- Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wanjian Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaolin Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Wang K, Pan Y, Tong S, Liang H, Qiu P. Deep-skin multiphoton microscopy of lymphatic vessels excited at the 1700-nm window in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:6474-6484. [PMID: 34745750 PMCID: PMC8548020 DOI: 10.1364/boe.437482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Visualization of lymphatic vessels is key to the understanding of their structure, function, and dynamics. Multiphoton microscopy (MPM) is a potential technology for imaging lymphatic vessels, but tissue scattering prevents its deep penetration in skin. Here we demonstrate deep-skin MPM of the lymphatic vessels in mouse hindlimb in vivo, excited at the 1700 nm window. Our results show that with contrast provided by indocyanine green (ICG), 2-photon fluorescence (2PF) imaging enables noninvasive imaging of lymphatic vessels 300 μm below the skin surface, visualizing both its structure and contraction dynamics. Simultaneously acquired second-harmonic generation (SHG) and third-harmonic generation (THG) images visualize the local environment in which the lymphatic vessels reside. After removing the surface skin layer, 2PF and THG imaging visualize finer structures of the lymphatic vessels: most notably, the label-free THG imaging visualizes lymphatic valves and their open-and-close dynamics in real time. MPM excited at the 1700-nm window thus provides a promising technology for the study of lymphatic vessels.
Collapse
|