1
|
Albuquerque AV, Soares da Costa D, Correia C, Reis RL, Alves NM, Costa RR, Pashkuleva I. Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4199-4209. [PMID: 39763065 DOI: 10.1021/acsami.4c18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers. The rate of spinning and the properties of the used biopolymers (charge and molecular weight) influence different characteristics of the fibers such as size and stability, among others. We used two major components of the neuronal stem cell niche, the polycationic collagen (Col) and the polyanionic hyaluronic acid (HA), to obtain bioactive fibers. We tested HA with different molecular weights and found that HA with medium and high molecular weights (350 and 1200 kDa, respectively) enabled drawing of microfibers with a homogeneous distribution of Col and HA, whereas low-molecular-weight HA (40 kDa) did not allow spinning. The obtained microfibers showed high swelling ability in a physiological buffer: their diameters increased more than 5-fold from their dry state. At these conditions, the tensile storage moduli of the fibers were similar to nervous tissues. Collagenase and hyaluronidase did not change the morphology of the fibers for up to 3 days but reduced their moduli 2- to 3-fold. Assays with PC12 neuronal-like cells showed that IPC microfibers support cell adhesion and viability regardless of the molecular weight of the used HA.
Collapse
Affiliation(s)
- Afonso V Albuquerque
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Cátia Correia
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Rui R Costa
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Bansal M, Wang B, Waxman S, Zhong F, Hua Y, Lu Y, Reynaud J, Fortune B, Sigal IA. Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39495185 PMCID: PMC11539975 DOI: 10.1167/iovs.65.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose IOP-induced mechanical insult on retinal ganglion cell axons within the optic nerve head (ONH) is believed to be a key factor in axonal damage and glaucoma. However, most studies focus on tissue-level mechanical deformations, overlooking that axons are long and thin, and that their susceptibility to damage likely depends on the insult's type (e.g. stretch/compression) and orientation (longitudinal/transverse). We propose an axon-centric approach to quantify IOP-induced mechanical insult from an axon perspective. Methods We used optical coherence tomography (OCT) scans from a healthy monkey eye along with histological images of cryosections to reconstruct the axon-occupied volume including detailed lamina cribrosa (LC) pores. Tissue-level strains were determined experimentally using digital volume correlation from OCT scans at baseline and elevated IOPs, then transformed into axonal strains using axon paths estimated by a fluid mechanics simulation. Results Axons in the LC and post-LC regions predominantly experienced longitudinal compression and transverse stretch, whereas those in the pre-LC and ONH rim mainly suffered longitudinal stretch and transverse compression. No clear patterns were observed for tissue-level strains. Conclusions Our approach allowed discerning axonal longitudinal and transverse mechanical insults, which are likely associated with different mechanisms of axonal damage. The technique also enabled quantifying insult along individual axon paths, providing a novel link relating the retinal nerve fiber layer and the optic nerve through the LC via individual axons. This is a promising approach to establish a clearer connection between IOP-induced insult and glaucoma. Further studies should evaluate a larger cohort.
Collapse
Affiliation(s)
- Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yuankai Lu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Juan Reynaud
- Discoveries in Sight Research Laboratories, Devers Eye Institute Legacy Health Research, Portland, Oregon, United States
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute Legacy Health Research, Portland, Oregon, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Ji F, Islam MR, Wang B, Hua Y, Sigal IA. Lamina Cribrosa Insertions Into the Sclera Are Sparser, Narrower, and More Slanted in the Anterior Lamina. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38648038 PMCID: PMC11044832 DOI: 10.1167/iovs.65.4.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose The lamina cribrosa (LC) depends on the sclera for support. The support must be provided through the LC insertions. Although a continuous insertion over the whole LC periphery is often assumed, LC insertions are actually discrete locations where LC collagenous beams meet the sclera. We hypothesized that LC insertions vary in number, size, and shape by quadrant and depth. Methods Coronal cryosections through the full LCs from six healthy monkey eyes were imaged using instant polarized light microscopy. The images were registered into a stack, on which we manually marked LC insertion outlines, nothing their position in-depth and quadrant (inferior, superior, nasal, or temporal). From the marks, we determined the insertion number, width, angle to the canal wall (90 degrees = perpendicular), and insertion ratio (fraction of LC periphery represented by insertions). Using linear mixed effect models, we determined if the insertion characteristics were associated with depth or quadrant. Results Insertions in the anterior LC were sparser, narrower, and more slanted than those in deeper LC (P values < 0.001). There were more insertions spanning a larger ratio of the canal wall in the middle LC than in the anterior and posterior (P values < 0.001). In the nasal quadrant, the insertion angles were significantly smaller (P < 0.001). Conclusions LC insertions vary substantially and significantly over the canal. The sparser, narrower, and more slanted insertions of the anterior-most LC may not provide the robust support afforded by insertions of the middle and posterior LC. These variations may contribute to the progressive deepening of the LC and regional susceptibility to glaucoma.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Lee PY, Fryc G, Gnalian J, Wang B, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Acta Biomater 2024; 173:135-147. [PMID: 37967694 PMCID: PMC10843755 DOI: 10.1016/j.actbio.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Mississippi, University, MS, USA; Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Ko J, Lee MJ, Jeong W, Choi S, Shin E, An YH, Kim HJ, Lee UJ, Kim BG, Kwak SY, Hwang NS. Single-Walled Carbon Nanotube-Guided Topical Skin Delivery of Tyrosinase to Prevent Photoinduced Damage. ACS NANO 2023; 17:20473-20491. [PMID: 37793020 DOI: 10.1021/acsnano.3c06846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
When the skin is exposed to ultraviolet radiation (UV), it leads to the degradation of the extracellular matrix (ECM) and results in inflammation. Subsequently, melanocytes are triggered to induce tyrosinase-mediated melanin synthesis, protecting the skin. Here, we introduce a proactive approach to protect the skin from photodamage via the topical delivery of Streptomyces avermitilis-derived tyrosinase (SaTy) using single-walled carbon nanotube (SWNT). Utilizing a reverse electrodialysis (RED) battery, we facilitated the delivery of SaTy-SWNT complexes up to depths of approximately 300 μm, as analyzed by using confocal Raman microscopy. When applied to ex vivo porcine skin and in vivo albino mouse skin, SaTy-SWNT synthesized melanin, resulting in 4-fold greater UV/vis absorption at 475 nm than in mice without SaTy-SWNT. The synthesized melanin efficiently absorbed UV light and alleviated skin inflammation. In addition, the densification of dermal collagen, achieved through SaTy-mediated cross-linking, reduced photoinduced wrinkles by 66.3% in the affected area. Our findings suggest that SWNT-mediated topical protein delivery holds promise in tissue engineering applications.
Collapse
Affiliation(s)
- Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jeong Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woojin Jeong
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Shin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Jin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Kurokawa M, Ohtsu T, Chatani E, Tamura A. Hyper Thermostability and Liquid-Crystal-Like Properties of Designed α-Helical Peptide Nanofibers. J Phys Chem B 2023; 127:8331-8343. [PMID: 37751540 DOI: 10.1021/acs.jpcb.3c03833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Structural and thermodynamic transitions of artificially designed α-helical nanofibers were investigated using eight peptide variants, including four peptides with amide-modified carboxyl termini (CB peptides) and four unmodified peptides (CF peptides). Temperature-dependent circular dichroism spectroscopy and differential scanning calorimetry showed that CB peptides exhibit thermostability up to 50 °C higher than CF peptides. As a result, one of the denaturation temperatures approached nearly 130 °C, which is exceptionally high for a biomacromolecule. Thermodynamic analysis and microscopy observations also showed that CB peptides undergo a thermal transition similar to the phase transition in liquid crystals. In addition, one of the peptides showed a sharp and highly cooperative transition with a small enthalpy change at around 25 °C, which was ascribed to a giga-bundle burst of the molecular assembly. These macroscopic changes in the thermostability and crystallinity of CB peptides may be attributed to an increased amphiphilicity of the molecule in the direction of the helix axis, originating from the microscopic modification of the carboxyl-terminus.
Collapse
Affiliation(s)
- Minami Kurokawa
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Tomoya Ohtsu
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Kobe University, 1-1 Rokkoudai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Ji F, Bansal M, Wang B, Hua Y, Islam MR, Matuschke F, Axer M, Sigal IA. A direct fiber approach to model sclera collagen architecture and biomechanics. Exp Eye Res 2023; 232:109510. [PMID: 37207867 PMCID: PMC10330555 DOI: 10.1016/j.exer.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/16/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Sclera collagen fiber microstructure and mechanical behavior are central to eye physiology and pathology. They are also complex, and are therefore often studied using modeling. Most models of sclera, however, have been built within a conventional continuum framework. In this framework, collagen fibers are incorporated as statistical distributions of fiber characteristics such as the orientation of a family of fibers. The conventional continuum approach, while proven successful for describing the macroscale behavior of the sclera, does not account for the sclera fibers are long, interwoven and interact with one another. Hence, by not considering these potentially crucial characteristics, the conventional approach has only a limited ability to capture and describe sclera structure and mechanics at smaller, fiber-level, scales. Recent advances in the tools for characterizing sclera microarchitecture and mechanics bring to the forefront the need to develop more advanced modeling techniques that can incorporate and take advantage of the newly available highly detailed information. Our goal was to create a new computational modeling approach that can represent the sclera fibrous microstructure more accurately than with the conventional continuum approach, while still capturing its macroscale behavior. In this manuscript we introduce the new modeling approach, that we call direct fiber modeling, in which the collagen architecture is built explicitly by long, continuous, interwoven fibers. The fibers are embedded in a continuum matrix representing the non-fibrous tissue components. We demonstrate the approach by doing direct fiber modeling of a rectangular patch of posterior sclera. The model integrated fiber orientations obtained by polarized light microscopy from coronal and sagittal cryosections of pig and sheep. The fibers were modeled using a Mooney-Rivlin model, and the matrix using a Neo-Hookean model. The fiber parameters were determined by inversely matching experimental equi-biaxial tensile data from the literature. After reconstruction, the direct fiber model orientations agreed well with the microscopy data both in the coronal plane (adjusted R2 = 0.8234) and in the sagittal plane (adjusted R2 = 0.8495) of the sclera. With the estimated fiber properties (C10 = 5746.9 MPa; C01 = -5002.6 MPa, matrix shear modulus 200 kPa), the model's stress-strain curves simultaneously fit the experimental data in radial and circumferential directions (adjusted R2's 0.9971 and 0.9508, respectively). The estimated fiber elastic modulus at 2.16% strain was 5.45 GPa, in reasonable agreement with the literature. During stretch, the model exhibited stresses and strains at sub-fiber level, with interactions among individual fibers which are not accounted for by the conventional continuum methods. Our results demonstrate that direct fiber models can simultaneously describe the macroscale mechanics and microarchitecture of the sclera, and therefore that the approach can provide unique insight into tissue behavior questions inaccessible with continuum approaches.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manik Bansal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad R Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix Matuschke
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Lee PY, Schilpp H, Naylor N, Watkins SC, Yang B, Sigal IA. Instant polarized light microscopy pi (IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues. OPTICS AND LASERS IN ENGINEERING 2023; 166:107594. [PMID: 37193214 PMCID: PMC10168649 DOI: 10.1016/j.optlaseng.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nathan Naylor
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
9
|
Jan NJ, Lee PY, Wallace J, Iasella M, Gogola A, Wang B, Sigal IA. Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles. J Biomech Eng 2023; 145:054503. [PMID: 36459150 PMCID: PMC9791674 DOI: 10.1115/1.4056354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.
Collapse
Affiliation(s)
- Ning-Jiun Jan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jacob Wallace
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael Iasella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Alexandra Gogola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ian A. Sigal
- Department of Ophthalmology, Laboratory of Ocular Biomechanics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
10
|
Dai X, Xu S, Yang X, Zhou KC, Glass C, Konda PC, Horstmeyer R. Quantitative Jones matrix imaging using vectorial Fourier ptychography. BIOMEDICAL OPTICS EXPRESS 2022; 13:1457-1470. [PMID: 35414998 PMCID: PMC8973192 DOI: 10.1364/boe.448804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/29/2023]
Abstract
This paper presents a microscopic imaging technique that uses variable-angle illumination to recover the complex polarimetric properties of a specimen at high resolution and over a large field-of-view. The approach extends Fourier ptychography, which is a synthetic aperture-based imaging approach to improve resolution with phaseless measurements, to additionally account for the vectorial nature of light. After images are acquired using a standard microscope outfitted with an LED illumination array and two polarizers, our vectorial Fourier ptychography (vFP) algorithm solves for the complex 2x2 Jones matrix of the anisotropic specimen of interest at each resolved spatial location. We introduce a new sequential Gauss-Newton-based solver that additionally jointly estimates and removes polarization-dependent imaging system aberrations. We demonstrate effective vFP performance by generating large-area (29 mm2), high-resolution (1.24 μm full-pitch) reconstructions of sample absorption, phase, orientation, diattenuation, and retardance for a variety of calibration samples and biological specimens.
Collapse
Affiliation(s)
- Xiang Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- These authors contributed equally
| | - Shiqi Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- These authors contributed equally
| | - Xi Yang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kevin C. Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, NC 27708, USA
| | - Pavan Chandra Konda
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Lee PY, Yang B, Hua Y, Waxman S, Zhu Z, Ji F, Sigal IA. Real-time imaging of optic nerve head collagen microstructure and biomechanics using instant polarized light microscopy. Exp Eye Res 2022; 217:108967. [PMID: 35114213 PMCID: PMC8957577 DOI: 10.1016/j.exer.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023]
Abstract
Current tools lack the temporal or spatial resolution necessary to image many important aspects of the architecture and dynamics of the optic nerve head (ONH). We evaluated the potential of instant polarized light microscopy (IPOL) to overcome these limitations by leveraging the ability to capture collagen fiber orientation and density in a single image. Coronal sections through the ONH of fresh normal sheep eyes were imaged using IPOL while they were stretched using custom uniaxial or biaxial micro-stretch devices. IPOL allows identifying ONH collagen architectural details, such as fiber interweaving and crimp, and has high temporal resolution, limited only by the frame rate of the camera. Local collagen fiber orientations and deformations were quantified using color analysis and image tracking techniques. We quantified stretch-induced collagen uncrimping of lamina cribrosa (LC) and peripapillary sclera (PPS), and changes in LC pore size (area) and shape (convexity and aspect ratio). The simultaneous high spatial and temporal resolutions of IPOL revealed complex ONH biomechanics: i) stretch-induced local deformation of the PPS was nonlinear and nonaffine. ii) under load the crimped collagen fibers in the PPS and LC straightened, without torsion and with only small rotations. iii) stretch-induced LC pore deformation was anisotropic and heterogeneous among pores. Overall, with stretch the pores were became larger, more convex, and more circular. We have demonstrated that IPOL reveals details of collagen morphology and mechanics under dynamic loading previously out of reach. IPOL can detect stretch-induced collagen uncrimping and other elements of the tissue nonlinear mechanical behavior. IPOL showed changes in pore morphology and collagen architecture that will help improve understanding of how LC tissue responds to load.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Yang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, United States; Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|