1
|
Xue J, Yue H, Lu W, Li Y, Huang G, Fu YV. Application of Raman spectroscopy and machine learning for Candida auris identification and characterization. Appl Environ Microbiol 2024:e0102524. [PMID: 39470219 DOI: 10.1128/aem.01025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Candida auris, an emerging fungal pathogen characterized by multidrug resistance and high-mortality nosocomial infections, poses a serious global health threat. However, the precise and rapid identification and characterization of C. auris remain a challenge. Here, we employed Raman spectroscopy combined with machine learning to identify C. auris isolates and its closely related species as well as to predict antifungal resistance and key virulence factors at the single-cell level. The average accuracy of identification among all Candida species was 93.33%, with an accuracy of 98% for the clinically simulated samples. The drug susceptibility of C. auris to fluconazole and amphotericin B was 99% and 94%, respectively. Furthermore, the phenotypic prediction of C. auris yielded an accuracy of 100% for aggregating cells and 97% for filamentous cells. This proof-of-concept methodology not only precisely identifies C. auris at the clade-specific level but also rapidly predicts the antifungal resistance and biological characteristics, promising a valuable medical diagnostic tool to combat this multidrug-resistant pathogen in the future. IMPORTANCE Currently, combating Candida auris infections and transmission is challenging due to the lack of efficient identification and characterization methods for this species. To address these challenges, our study presents a novel approach that utilizes Raman spectroscopy and artificial intelligence to achieve precise identification and characterization of C. auris at the singe-cell level. It can accurately identify a single cell from the four C. auris clades. Additionally, we developed machine learning models designed to detect antifungal resistance in C. auris cells and differentiate between two distinct phenotypes based on the single-cell Raman spectrum. We also constructed prediction models for detecting aggregating and filamentous cells in C. auris, both of which are closely linked to its virulence. These results underscore the merits of Raman spectroscopy in the identification and characterization of C. auris, promising improved outcomes in the battle against C. auris infections and transmission.
Collapse
Affiliation(s)
- Junjing Xue
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huizhen Yue
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing, China
| | - Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanying Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao Z, Jin Z, Wu G, Li C, Yu J. TriFNet: A triple-branch feature fusion network for pH determination by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124048. [PMID: 38387412 DOI: 10.1016/j.saa.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Due to the acidic tumor microenvironment caused by metabolic changes in tumor cells, the accurate pH detection of extracellular fluid is helpful for doctors in precise tumor resection. The combination of Raman spectroscopy and deep learning provides a solution for pH detection. However, most existing studies use one-dimensional convolutional neural networks (1D-CNNs) for spectral analysis, which limits the performance due to insufficient feature extraction. In this work, we propose a 2D triple-branch feature fusion network (TriFNet) for accurate pH determination using surface-enhanced Raman spectra (SERS). Specifically, we design a triple-branch network structure by converting Raman spectra into three types of images to extensively extract complex patterns in spectra. In addition, an attention fusion module, which leverages the complementarity among features in both space and channel, is designed to obtain the valuable information, achieving further accurate pH determination. On our Raman spectral dataset containing 14,137 samples, we achieved mean absolute error (MAE) of 0.059, standard deviation of the absolute error (SD) of 0.07, root mean squared error (RMSE) of 0.092, and coefficient of determination (R2) of 0.991 on the test set. Compared with other published methods, the four metrics showed an average improvement of 47%, 39%, 43%, and 6%, respectively. In addition, visualization validates the diagnostic capability of our model to correlate with biomolecular signatures. Meanwhile, our model has robustness to different SERS chips. These results prove the potential of our method to develop an effective technology based on Raman spectroscopy for accurate pH determination to guide surgery.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ziyi Jin
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Cong Li
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Frempong SB, Salbreiter M, Mostafapour S, Pistiki A, Bocklitz TW, Rösch P, Popp J. Illuminating the Tiny World: A Navigation Guide for Proper Raman Studies on Microorganisms. Molecules 2024; 29:1077. [PMID: 38474589 PMCID: PMC10934050 DOI: 10.3390/molecules29051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless, a lot of different parameters need to be considered to establish a reliable database capable of identifying real-world samples such as medical or environmental probes. In this review, the establishment of such reliable databases with the proper design in microbiological Raman studies is demonstrated, shining a light into all the parts that require attention. Aspects such as the strain selection, sample preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is to serve as a guide for the design of microbiological Raman studies that can support the establishment of this method in different fields.
Collapse
Affiliation(s)
- Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sara Mostafapour
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thomas W. Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Bi X, Lin L, Chen Z, Ye J. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy. SMALL METHODS 2024; 8:e2301243. [PMID: 37888799 DOI: 10.1002/smtd.202301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS), well acknowledged as a fingerprinting and sensitive analytical technique, has exerted high applicational value in a broad range of fields including biomedicine, environmental protection, food safety among the others. In the endless pursuit of ever-sensitive, robust, and comprehensive sensing and imaging, advancements keep emerging in the whole pipeline of SERS, from the design of SERS substrates and reporter molecules, synthetic route planning, instrument refinement, to data preprocessing and analysis methods. Artificial intelligence (AI), which is created to imitate and eventually exceed human behaviors, has exhibited its power in learning high-level representations and recognizing complicated patterns with exceptional automaticity. Therefore, facing up with the intertwining influential factors and explosive data size, AI has been increasingly leveraged in all the above-mentioned aspects in SERS, presenting elite efficiency in accelerating systematic optimization and deepening understanding about the fundamental physics and spectral data, which far transcends human labors and conventional computations. In this review, the recent progresses in SERS are summarized through the integration of AI, and new insights of the challenges and perspectives are provided in aim to better gear SERS toward the fast track.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
5
|
Lyu JW, Zhang XD, Tang JW, Zhao YH, Liu SL, Zhao Y, Zhang N, Wang D, Ye L, Chen XL, Wang L, Gu B. Rapid Prediction of Multidrug-Resistant Klebsiella pneumoniae through Deep Learning Analysis of SERS Spectra. Microbiol Spectr 2023; 11:e0412622. [PMID: 36877048 PMCID: PMC10100812 DOI: 10.1128/spectrum.04126-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 03/07/2023] Open
Abstract
Klebsiella pneumoniae is listed by the WHO as a priority pathogen of extreme importance that can cause serious consequences in clinical settings. Due to its increasing multidrug resistance all over the world, K. pneumoniae has the potential to cause extremely difficult-to-treat infections. Therefore, rapid and accurate identification of multidrug-resistant K. pneumoniae in clinical diagnosis is important for its prevention and infection control. However, the limitations of conventional and molecular methods significantly hindered the timely diagnosis of the pathogen. As a label-free, noninvasive, and low-cost method, surface-enhanced Raman scattering (SERS) spectroscopy has been extensively studied for its application potentials in the diagnosis of microbial pathogens. In this study, we isolated and cultured 121 K. pneumoniae strains from clinical samples with different drug resistance profiles, which included polymyxin-resistant K. pneumoniae (PRKP; n = 21), carbapenem-resistant K. pneumoniae, (CRKP; n = 50), and carbapenem-sensitive K. pneumoniae (CSKP; n = 50). For each strain, a total of 64 SERS spectra were generated for the enhancement of data reproducibility, which were then computationally analyzed via the convolutional neural network (CNN). According to the results, the deep learning model CNN plus attention mechanism could achieve a prediction accuracy as high as 99.46%, with robustness score of 5-fold cross-validation at 98.87%. Taken together, our results confirmed the accuracy and robustness of SERS spectroscopy in the prediction of drug resistance of K. pneumoniae strains with the assistance of deep learning algorithms, which successfully discriminated and predicted PRKP, CRKP, and CSKP strains. IMPORTANCE This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.
Collapse
Affiliation(s)
- Jing-Wen Lyu
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xue Di Zhang
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, The Affiliated Xuzhou Infectious Diseases Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Jiangsu Province, Xuzhou, China
| | - Yun-Hu Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Su-Ling Liu
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yue Zhao
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dan Wang
- Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Li Chen
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bing Gu
- Department of Laboratory Medicine, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Lu W, Li H, Qiu H, Wang L, Feng J, Fu YV. Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning. Front Microbiol 2023; 13:1076965. [PMID: 36687641 PMCID: PMC9846160 DOI: 10.3389/fmicb.2022.1076965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Rapid, accurate, and label-free detection of pathogenic bacteria and antibiotic resistance at single-cell resolution is a technological challenge for clinical diagnosis. Overcoming the cumbersome culture process of pathogenic bacteria and time-consuming antibiotic susceptibility assays will significantly benefit early diagnosis and optimize the use of antibiotics in clinics. Raman spectroscopy can collect molecular fingerprints of pathogenic bacteria in a label-free and culture-independent manner, which is suitable for pathogen diagnosis at single-cell resolution. Here, we report a method based on Raman spectroscopy combined with machine learning to rapidly and accurately identify pathogenic bacteria and detect antibiotic resistance at single-cell resolution. Our results show that the average accuracy of identification of 12 species of common pathogenic bacteria by the machine learning method is 90.73 ± 9.72%. Antibiotic-sensitive and antibiotic-resistant strains of Acinetobacter baumannii isolated from hospital patients were distinguished with 99.92 ± 0.06% accuracy using the machine learning model. Meanwhile, we found that sensitive strains had a higher nucleic acid/protein ratio and antibiotic-resistant strains possessed abundant amide II structures in proteins. This study suggests that Raman spectroscopy is a promising method for rapidly identifying pathogens and detecting their antibiotic susceptibility.
Collapse
Affiliation(s)
- Weilai Lu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haoning Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Yu Vincent Fu,
| |
Collapse
|
7
|
Luo SH, Wang WL, Zhou ZF, Xie Y, Ren B, Liu GK, Tian ZQ. Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS. Anal Chem 2022; 94:10151-10158. [PMID: 35794045 DOI: 10.1021/acs.analchem.2c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS), providing near-single-molecule-level fingerprint information, is a powerful tool for the trace analysis of a target in a complicated matrix and is especially facilitated by the development of modern machine learning algorithms. However, both the high demand of mass data and the low interpretability of the mysterious black-box operation significantly limit the well-trained model to real systems in practical applications. Aiming at these two issues, we constructed a novel machine learning algorithm-based framework (Vis-CAD), integrating visual random forest, characteristic amplifier, and data augmentation. The introduction of data augmentation significantly reduced the requirement of mass data, and the visualization of the random forest clearly presented the captured features, by which one was able to determine the reliability of the algorithm. Taking the trace analysis of individual polycyclic aromatic hydrocarbons in a mixture as an example, a trustworthy accuracy no less than 99% was realized under the optimized condition. The visualization of the algorithm framework distinctly demonstrated that the captured feature was well correlated to the characteristic Raman peaks of each individual. Furthermore, the sensitivity toward the trace individual could be improved by least 1 order of magnitude as compared to that with the naked eye. The proposed algorithm distinguished by the lesser demand of mass data and the visualization of the operation process offers a new way for the indestructible application of machine learning algorithms, which would bring push-to-the-limit sensitivity toward the qualitative and quantitative analysis of trace targets, not only in the field of SERS, but also in the much wider spectroscopy world. It is implemented in the Python programming language and is open-source at https://github.com/3331822w/Vis-CAD.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhi-Fan Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yi Xie
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China.,Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|