1
|
Ushenko AG, Sdobnov A, Soltys IV, Ushenko YA, Dubolazov AV, Sklyarchuk VM, Olar AV, Trifonyuk L, Doronin A, Yan W, Bykov A, Meglinski I. Insights into polycrystalline microstructure of blood films with 3D Mueller matrix imaging approach. Sci Rep 2024; 14:13679. [PMID: 38871757 PMCID: PMC11176350 DOI: 10.1038/s41598-024-63816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
This study introduces a novel approach in the realm of liquid biopsies, employing a 3D Mueller-matrix (MM) image reconstruction technique to analyze dehydrated blood smear polycrystalline structures. Our research centers on exploiting the unique optical anisotropy properties of blood proteins, which undergo structural alterations at the quaternary and tertiary levels in the early stages of diseases such as cancer. These alterations manifest as distinct patterns in the polycrystalline microstructure of dried blood droplets, offering a minimally invasive yet highly effective method for early disease detection. We utilized a groundbreaking 3D MM mapping technique, integrated with digital holographic reconstruction, to perform a detailed layer-by-layer analysis of partially depolarizing dry blood smears. This method allows us to extract critical optical anisotropy parameters, enabling the differentiation of blood films from healthy individuals and prostate cancer patients. Our technique uniquely combines polarization-holographic and differential MM methodologies to spatially characterize the 3D polycrystalline structures within blood films. A key advancement in our study is the quantitative evaluation of optical anisotropy maps using statistical moments (first to fourth orders) of linear and circular birefringence and dichroism distributions. This analysis provides a comprehensive characterization of the mean, variance, skewness, and kurtosis of these distributions, crucial for identifying significant differences between healthy and cancerous samples. Our findings demonstrate an exceptional accuracy rate of over 90 % for the early diagnosis and staging of cancer, surpassing existing screening methods. This high level of precision and the non-invasive nature of our technique mark a significant advancement in the field of liquid biopsies. It holds immense potential for revolutionizing cancer diagnosis, early detection, patient stratification, and monitoring, thereby greatly enhancing patient care and treatment outcomes. In conclusion, our study contributes a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable, and efficient diagnostic methods. It opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology.
Collapse
Affiliation(s)
- Alexander G Ushenko
- Taizhou Institute of Zhejiang University, Taizhou, 310027, China
- Optics and Publishing Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Anton Sdobnov
- Optoelectronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 900014, Oulu, Finland
| | - Irina V Soltys
- Optics and Publishing Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Yuriy A Ushenko
- Department of Physics, Shaoxing University, Shaoxing, Zhejiang, 312000, China
- Computer Science Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Alexander V Dubolazov
- Optics and Publishing Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Valery M Sklyarchuk
- Optics and Publishing Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Alexander V Olar
- Optics and Publishing Department, Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58002, Ukraine
| | - Liliya Trifonyuk
- Rivne State Medical Center, 78 Kyivska Str., Rivne, 33007, Ukraine
| | - Alexander Doronin
- School of Engineering and Computer Science, Victoria University of Wellington, 6140, Wellington, New Zealand
| | - Wenjun Yan
- Taizhou Institute of Zhejiang University, Taizhou, 310027, China
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques, University of Oulu, P.O. Box 4500, 900014, Oulu, Finland
| | - Igor Meglinski
- College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
2
|
Sun C, Wang Y, Jin X, Ni B, Xu B, Hou JJ, Zhong C, Liu J, Wu Y, Song L, Hou L, Yi M, Liu X, Xiong J. Observing perineuronal nets like structures via coaxial scattering quantitative interference imaging at multiple wavelengths. OPTICS EXPRESS 2024; 32:18150-18160. [PMID: 38858978 DOI: 10.1364/oe.521510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 06/12/2024]
Abstract
Perineuronal nets (PNNs) are important functional structures on the surface of nerve cells. Observation of PNNs usually requires dyeing or fluorescent labeling. As a network structure with a micron grid and sub-wavelength thickness but no special optical properties, quantitative phase imaging (QPI) is the only purely optical method for high-resolution imaging of PNNs. We proposed a Scattering Quantitative Interference Imaging (SQII) method which measures the geometric rather than transmission or reflection phase during the scattering process to visualize PNNs. Different from QIP methods, SQII method is sensitive to scattering and not affected by wavelength changes. Via geometric phase shifting method, we simplify the phase shift operation. The SQII method not only focuses on interference phase, but also on the interference contrast. The singularity points and phase lines of the scattering geometric phase depict the edges of the network structure and can be found at the valley area of the interference contrast parameter SINDR under different wavelengths. Our SQII method has its unique imaging properties, is very simple and easy to implement and has more worth for promotion.
Collapse
|
3
|
Ma Y, Dai T, Yu L, Ma L, An S, Wang Y, Liu M, Zheng J, Kong L, Zuo C, Gao P. Reflectional quantitative differential phase microscopy using polarized wavefront phase modulation. JOURNAL OF BIOPHOTONICS 2023; 16:e202200325. [PMID: 36752421 DOI: 10.1002/jbio.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 06/07/2023]
Abstract
Quantitative phase microscopy (QPM), as a label-free and nondestructive technique, has been playing an indispensable tool in biomedical imaging and industrial inspection. Herein, we introduce a reflectional quantitative differential phase microscopy (termed RQDPM) based on polarized wavefront phase modulation and partially coherent full-aperture illumination, which has high spatial resolution and spatio-temporal phase sensitivity and is applicable to opaque surfaces and turbid biological specimens. RQDPM does not require additional polarized devices and can be easily switched from reflectional mode to transmission mode. In addition, RQDPM inherits the characteristic of high axial resolution of differential interference contrast microscope, thereby providing topography for opaque surfaces. We experimentally demonstrate the reflectional phase imaging ability of RQDPM with several samples: semiconductor wafer, thick biological tissues, red blood cells, and Hela cells. Furthermore, we dynamically monitor the flow state of microspheres in a self-built microfluidic channel by using RQDPM converted into the transmission mode.
Collapse
Affiliation(s)
- Ying Ma
- School of Physics, Xidian University, Xi'an, China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lan Yu
- School of Physics, Xidian University, Xi'an, China
| | - Lin Ma
- School of Physics, Xidian University, Xi'an, China
| | - Sha An
- School of Physics, Xidian University, Xi'an, China
| | - Yang Wang
- School of Physics, Xidian University, Xi'an, China
| | - Min Liu
- School of Physics, Xidian University, Xi'an, China
| | | | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chao Zuo
- School of Physics, Xidian University, Xi'an, China
| | - Peng Gao
- School of Physics, Xidian University, Xi'an, China
| |
Collapse
|
4
|
Luo J, Liu Y, Wu D, Xu X, Shao L, Feng Y, Pan J, Zhao J, Shen Y, Li Z. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. SCIENCE ADVANCES 2022; 8:eadd9158. [PMID: 36525498 DOI: 10.1126/sciadv.add9158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Focusing light deep inside live scattering tissue promises to revolutionize biophotonics by enabling deep tissue noninvasive optical imaging, manipulation, and therapy. By combining with guide stars, wavefront shaping is emerging as a powerful tool to make scattering media optically transparent. However, for in vivo biomedical applications, the speeds of existing techniques are still too slow to accommodate the fast speckle decorrelation of live tissue. To address this key bottleneck, we develop a quaternary phase encoding scheme to enable single-exposure time-reversed ultrasonically encode optical focusing with full-phase modulations. Specifically, we focus light inside dynamic scattering media with an average mode time down to 29 ns, which indicates that more than 104 effective spatial modes can be controlled within 1 millisecond. With this technique, we demonstrate in vivo light focusing in between a highly opaque adult zebrafish of 5.1 millimeters in thickness and a ground glass diffuser. Our work presents an important step toward in vivo deep tissue applications of wavefront shaping.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Daixuan Wu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lijie Shao
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanhua Feng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhao
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|