1
|
Zhang L, Xue J, Xie Y, Huang D, Xie Z, Zhu L, Chen X, Cui G, Ali S, Huang G, Chen X. Automatic detection of ischemic necrotic sites in small intestinal tissue using hyperspectral imaging and transfer learning. JOURNAL OF BIOPHOTONICS 2024; 17:e202300315. [PMID: 38018735 DOI: 10.1002/jbio.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Acquiring large amounts of hyperspectral data of small intestinal tissue with real labels in the clinic is difficult, and the data shows inter-patient variability. Building an automatic identification model using a small dataset presents a crucial challenge in obtaining a strong generalization of the model. This study aimed to explore the performance of hyperspectral imaging and transfer learning techniques in the automatic identification of normal and ischemic necrotic sites in small intestinal tissue. Hyperspectral data of small intestinal tissues were collected from eight white rabbit samples. The transfer component analysis (TCA) method was performed to transfer learning on hyperspectral data between different samples and the variability of data distribution between samples was reduced. The results showed that the TCA transfer learning method improved the accuracy of the classification model with less training data. This study provided a reliable method for single-sample modelling to detect necrotic sites in small intestinal tissue .
Collapse
Affiliation(s)
- Lechao Zhang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Jianxia Xue
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Yi Xie
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Danfei Huang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Zhonghao Xie
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Libin Zhu
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Chen
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guihua Cui
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Guangzao Huang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|
2
|
Zhang L, Huang D, Chen X, Zhu L, Xie Z, Chen X, Cui G, Zhou Y, Huang G, Shi W. Discrimination between normal and necrotic small intestinal tissue using hyperspectral imaging and unsupervised classification. JOURNAL OF BIOPHOTONICS 2023:e202300020. [PMID: 36966458 DOI: 10.1002/jbio.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Objective and automatic clinical discrimination of normal and necrotic sites of small intestinal tissue remains challenging. In this study, hyperspectral imaging (HSI) and unsupervised classification techniques were used to distinguish normal and necrotic sites of small intestinal tissues. Small intestinal tissue hyperspectral images of eight Japanese large-eared white rabbits were acquired using a visible near-infrared hyperspectral camera, and K-means and density peaks (DP) clustering algorithms were used to differentiate between normal and necrotic tissue. The three cases in this study showed that the average clustering purity of the DP clustering algorithm reached 92.07% when the two band combinations of 500-622 and 700-858 nm were selected. The results of this study suggest that HSI and DP clustering can assist physicians in distinguishing between normal and necrotic sites in the small intestine in vivo.
Collapse
Affiliation(s)
- Lechao Zhang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Danfei Huang
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Libin Zhu
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhonghao Xie
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Xiaoqing Chen
- Pediatric General Surgery, The Second Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guihua Cui
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Yao Zhou
- College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, China
- Zhongshan Research Institute, Changchun University of Science and Technology, Zhongshan, China
| | - Guangzao Huang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Wen Shi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| |
Collapse
|