1
|
Zaitsev VY, Matveev LA, Matveyev AL, Plekhanov AA, Gubarkova EV, Kiseleva EB, Sovetsky AA. Geophysics-Inspired Nonlinear Stress-Strain Law for Biological Tissues and Its Applications in Compression Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5023. [PMID: 39459728 PMCID: PMC11509212 DOI: 10.3390/ma17205023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
We propose a nonlinear stress-strain law to describe nonlinear elastic properties of biological tissues using an analogy with the derivation of nonlinear constitutive laws for cracked rocks. The derivation of such a constitutive equation has been stimulated by the recently developed experimental technique-quasistatic Compression Optical Coherence Elastography (C-OCE). C-OCE enables obtaining nonlinear stress-strain dependences relating the applied uniaxial compressive stress and the axial component of the resultant strain in the tissue. To adequately describe nonlinear stress-strain dependences obtained with C-OCE for various tissues, the central idea is that, by analogy with geophysics, nonlinear elastic response of tissues is mostly determined by the histologically confirmed presence of interstitial gaps/pores resembling cracks in rocks. For the latter, the nonlinear elastic response is mostly determined by elastic properties of narrow cracks that are highly compliant and can easily be closed by applied compressing stress. The smaller the aspect ratio of such a gap/crack, the smaller the stress required to close it. Upon reaching sufficiently high compressive stress, almost all such gaps become closed, so that with further increase in the compressive stress, the elastic response of the tissue becomes nearly linear and is determined by the Young's modulus of the host tissue. The form of such a nonlinear dependence is determined by the distribution of the cracks/gaps over closing pressures; for describing this process, an analogy with geophysics is also used. After presenting the derivation of the proposed nonlinear law, we demonstrate that it enables surprisingly good fitting of experimental stress-strain curves obtained with C-OCE for a broad range of various tissues. Unlike empirical fitting, each of the fitting parameters in the proposed law has a clear physical meaning. The linear and nonlinear elastic parameters extracted using this law have already demonstrated high diagnostic value, e.g., for differentiating various types of cancerous and noncancerous tissues.
Collapse
Affiliation(s)
- Vladimir Y. Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Lev A. Matveev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Alexander L. Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| | - Anton A. Plekhanov
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Ekaterina V. Gubarkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Elena B. Kiseleva
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod 603005, Russia; (A.A.P.); (E.V.G.); (E.B.K.)
| | - Alexander A. Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Uljanova St., 46, Nizhny Novgorod 603950, Russia; (L.A.M.); (A.L.M.); (A.A.S.)
| |
Collapse
|
2
|
Kiseleva EB, Sovetsky AA, Ryabkov MG, Gubarkova EV, Plekhanov AA, Bederina EL, Potapov AL, Bogomolova AY, Zaitsev VY, Gladkova ND. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400086. [PMID: 38923316 DOI: 10.1002/jbio.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.
Collapse
Affiliation(s)
- Elena B Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maksim G Ryabkov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anton A Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya L Bederina
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseniy L Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Y Bogomolova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir Y Zaitsev
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Alexandrovskaya YM, Kasianenko EM, Sovetsky AA, Matveyev AL, Atyakshin DA, Patsap OI, Ignatiuk MA, Volodkin AV, Zaitsev VY. Optical coherence elastography with osmotically induced strains: Preliminary demonstration for express detection of cartilage degradation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400016. [PMID: 38702959 DOI: 10.1002/jbio.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Optical coherence elastography (OCE) demonstrated impressive abilities for diagnosing tissue types/states using differences in their biomechanics. Usually, OCE visualizes tissue deformation induced by some additional stimulus (e.g., contact compression or auxiliary elastic-wave excitation). We propose a new variant of OCE with osmotically induced straining (OIS-OCE) and demonstrate its application to assess various stages of proteoglycan content degradation in cartilage. The information-bearing signatures in OIS-OCE are the magnitude and rate of strains caused by the application of osmotically active solutions onto the sample surface. OCE examination of the induced strains does not require special tissue preparation, the osmotic stimulation is highly reproducible, and strains are observed in noncontact mode. Several minutes suffice to obtain a conclusion. These features are promising for intraoperative method usage when express assessment of tissue state is required during surgical operations. The "waterfall" images demonstrate the development of cumulative osmotic strains in control and degraded cartilage samples.
Collapse
Affiliation(s)
| | - Ekaterina M Kasianenko
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
- National Research Center Kurchatov Institute, Moscow, Russia
| | - Alexander A Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry A Atyakshin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Olga I Patsap
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Mikhail A Ignatiuk
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Artem V Volodkin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Vladimir Y Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Navaeipour F, Hepburn MS, Li J, Metzner KL, Amos SE, Vahala D, Maher S, Choi YS, Kennedy BF. In situ stress estimation in quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:3609-3626. [PMID: 38867802 PMCID: PMC11166433 DOI: 10.1364/boe.522002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
In quantitative micro-elastography (QME), a pre-characterized compliant layer with a known stress-strain curve is utilized to map stress at the sample surface. However, differences in the boundary conditions of the compliant layer when it is mechanically characterized and when it is used in QME experiments lead to inconsistent stress estimation and consequently, inaccurate elasticity measurements. Here, we propose a novel in situ stress estimation method using an optical coherence tomography (OCT)-based uniaxial compression testing system integrated with the QME experimental setup. By combining OCT-measured axial strain with axial stress determined using a load cell in the QME experiments, we can estimate in situ stress for the compliant layer, more accurately considering its boundary conditions. Our proposed method shows improved accuracy, with an error below 10%, compared to 85% using the existing QME technique with no lubrication. Furthermore, demonstrations on hydrogels and cells indicate the potential of this approach for improving the characterization of the micro-scale mechanical properties of cells and their interactions with the surrounding biomaterial, which has potential for application in cell mechanobiology.
Collapse
Affiliation(s)
- Farzaneh Navaeipour
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Kai L. Metzner
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
| | - Sebastian E. Amos
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Danielle Vahala
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Samuel Maher
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
5
|
Wang C, Zhu J, Ma J, Meng X, Ma Z, Fan F. Optical coherence elastography and its applications for the biomechanical characterization of tissues. JOURNAL OF BIOPHOTONICS 2023; 16:e202300292. [PMID: 37774137 DOI: 10.1002/jbio.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The biomechanical characterization of the tissues provides significant evidence for determining the pathological status and assessing the disease treatment. Incorporating elastography with optical coherence tomography (OCT), optical coherence elastography (OCE) can map the spatial elasticity distribution of biological tissue with high resolution. After the excitation with the external or inherent force, the tissue response of the deformation or vibration is detected by OCT imaging. The elastogram is assessed by stress-strain analysis, vibration amplitude measurements, and quantification of elastic wave velocities. OCE has been used for elasticity measurements in ophthalmology, endoscopy, and oncology, improving the precision of diagnosis and treatment of disease. In this article, we review the OCE methods for biomechanical characterization and summarize current OCE applications in biomedicine. The limitations and future development of OCE are also discussed during its translation to the clinic.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | | | - Jiawei Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Xiaochen Meng
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|