1
|
Barolet AC, Magne B, Barolet D, Germain L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants (Basel) 2024; 13:1176. [PMID: 39456430 PMCID: PMC11504005 DOI: 10.3390/antiox13101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
NO is a crucial signaling molecule involved in skin health, the immune response, and the protection against environmental stressors. This study explores how different wavelengths of light, namely blue (455 nm), red (660 nm), and near infrared (NIR, 850 nm), affect nitric oxide (NO) production in skin cells. Primary keratinocytes and fibroblasts from three donors were exposed to these wavelengths, and NO production was quantified using a DAF-FM fluorescent probe. The results demonstrated that all three wavelengths stimulated NO release, with blue light showing the most pronounced effect. Specifically, blue light induced a 1.7-fold increase in NO in keratinocytes compared to red and NIR light and a 2.3-fold increase in fibroblasts compared to red light. Notably, fibroblasts exposed to NIR light produced 1.5 times more NO than those exposed to red light, while keratinocytes consistently responded more robustly across all wavelengths. In conclusion, blue light significantly boosts NO production in both keratinocytes and fibroblasts, making it the most effective wavelength. Red and NIR light, while less potent, also promote NO production and could serve as complementary therapeutic options, particularly for minimizing potential photoaging effects.
Collapse
Affiliation(s)
- Augustin C. Barolet
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
| | - Brice Magne
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
| | - Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
- Dermatology Division, Department of Medicine, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Garcia-Mouronte E, Pérez-González LA, Naharro-Rodriguez J, Fernández Guarino M. Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life (Basel) 2024; 14:822. [PMID: 39063576 PMCID: PMC11277730 DOI: 10.3390/life14070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The detrimental effects of ultraviolet radiation (UVR) on human skin are well-documented, encompassing DNA damage, oxidative stress, and an increased risk of carcinogenesis. Conventional photoprotective measures predominantly rely on filters, which scatter or absorb UV radiation, yet fail to address the cellular damage incurred post-exposure. To fill this gap, antioxidant molecules and DNA-repair enzymes have been extensively researched, offering a paradigm shift towards active photoprotection capable of both preventing and reversing UV-induced damage. In the current review, we focused on "active photoprotection", assessing the state-of-the-art, latest advancements and scientific data from clinical trials and in vivo models concerning the use of DNA-repair enzymes and naturally occurring antioxidant molecules.
Collapse
Affiliation(s)
- Emilio Garcia-Mouronte
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | | - Jorge Naharro-Rodriguez
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | |
Collapse
|
3
|
Wang Y, Zhang Y, Leng H, Dong J. Segmentation of hyphae and yeast in fungi-infected tissue slice images and its application in analyzing antifungal blue light therapy. Med Mycol 2024; 62:myae050. [PMID: 38692846 DOI: 10.1093/mmy/myae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024] Open
Abstract
Candida albicans is a pathogenic fungus that undergoes morphological transitions between hyphal and yeast forms, adapting to diverse environmental stimuli and exhibiting distinct virulence. Existing research works on antifungal blue light (ABL) therapy have either focused solely on hyphae or neglected to differentiate between morphologies, obscuring potential differential effects. To address this gap, we established a novel dataset of 150 C. albicans-infected mouse skin tissue slice images with meticulously annotated hyphae and yeast. Eleven representative convolutional neural networks were trained and evaluated on this dataset using seven metrics to identify the optimal model for segmenting hyphae and yeast in original high pixel size images. Leveraging the segmentation results, we analyzed the differential impact of blue light on the invasion depth and density of both morphologies within the skin tissue. U-Net-BN outperformed other models in segmentation accuracy, achieving the best overall performance. While both hyphae and yeast exhibited significant reductions in invasion depth and density at the highest ABL dose (180 J/cm2), only yeast was significantly inhibited at the lower dose (135 J/cm2). This novel finding emphasizes the importance of developing more effective treatment strategies for both morphologies.
Collapse
Affiliation(s)
- Yuan Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yunchu Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hong Leng
- The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jianfei Dong
- School of Future Science and Engineering, Soochow University, Suzhou 215222, China
| |
Collapse
|
4
|
Serrage HJ, Eling CJ, Alves PU, Xie E, McBain AJ, Dawson MD, O’Neill C, Laurand N. Spectral characterization of a blue light-emitting micro-LED platform on skin-associated microbial chromophores. BIOMEDICAL OPTICS EXPRESS 2024; 15:3200-3215. [PMID: 38855662 PMCID: PMC11161378 DOI: 10.1364/boe.522867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
The therapeutic application of blue light (380 - 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420-483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402-413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420-425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications.
Collapse
Affiliation(s)
- Hannah J. Serrage
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Charlotte J. Eling
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Pedro U. Alves
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Enyuan Xie
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Martin D. Dawson
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Catherine O’Neill
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Nicolas Laurand
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| |
Collapse
|
5
|
Serrage HJ, O’ Neill CA, Uzunbajakava NE. Illuminating microflora: shedding light on the potential of blue light to modulate the cutaneous microbiome. Front Cell Infect Microbiol 2024; 14:1307374. [PMID: 38660491 PMCID: PMC11039841 DOI: 10.3389/fcimb.2024.1307374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and chronic wounds) rank as the fourth most prevalent human disease, affecting nearly one-third of the world's population. Skin diseases contribute to significant non-fatal disability globally, impacting individuals, partners, and society at large. Recent evidence suggests that specific microbes colonising our skin and its appendages are often overrepresented in disease. Therefore, manipulating interactions of the microbiome in a non-invasive and safe way presents an attractive approach for management of skin and hair follicle conditions. Due to its proven anti-microbial and anti-inflammatory effects, blue light (380 - 495nm) has received considerable attention as a possible 'magic bullet' for management of skin dysbiosis. As humans, we have evolved under the influence of sun exposure, which comprise a significant portion of blue light. A growing body of evidence indicates that our resident skin microbiome possesses the ability to detect and respond to blue light through expression of chromophores. This can modulate physiological responses, ranging from cytotoxicity to proliferation. In this review we first present evidence of the diverse blue light-sensitive chromophores expressed by members of the skin microbiome. Subsequently, we discuss how blue light may impact the dialog between the host and its skin microbiome in prevalent skin and hair follicle conditions. Finally, we examine the constraints of this non-invasive treatment strategy and outline prospective avenues for further research. Collectively, these findings present a comprehensive body of evidence regarding the potential utility of blue light as a restorative tool for managing prevalent skin conditions. Furthermore, they underscore the critical unmet need for a whole systems approach to comprehend the ramifications of blue light on both host and microbial behaviour.
Collapse
Affiliation(s)
- Hannah J. Serrage
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Catherine A. O’ Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
6
|
Kusumoto J, Akashi M, Terashi H, Sakakibara S. Differential Photosensitivity of Fibroblasts Obtained from Normal Skin and Hypertrophic Scar Tissues. Int J Mol Sci 2024; 25:2126. [PMID: 38396801 PMCID: PMC10889571 DOI: 10.3390/ijms25042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiroto Terashi
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| | - Shunsuke Sakakibara
- Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (H.T.); (S.S.)
| |
Collapse
|
7
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
8
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|