1
|
Vasudevan B, Chang Q, Wang B, Huang S, Sui Y, Zhu W, Fan Q, Song Y. Effect of intracellular uptake of nanoparticle-encapsulated trehalose on the hemocompatibility of allogeneic valves in the VS83 vitrification protocol. Nanobiomedicine (Rij) 2020; 7:1849543520983173. [PMID: 33447299 PMCID: PMC7780325 DOI: 10.1177/1849543520983173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose is a disaccharide molecule consisting of two molecules of glucose. Industrially, trehalose is derived from corn starch and utilized as a drug. This study aims to examine whether the integration of nanoparticle-encapsulated trehalose to the Ice-Free Cryopreservation (IFC) method for preserving heart valves has better cell viability, benefits to protect the extracellular matrix (ECM), and reduce immune response after storage. For the experiment to be carried out, we obtained materials, and the procedures were carried out in the following manner. The initial step was the preparation of hydroxyapatite nanoparticles, followed by precipitation to acquire Apatite colloidal suspensions. Animals were obtained, and their tissue isolation and grouping were done ethically. All samples were then divided into four groups, Control group, Conventional Frozen Cryopreservation (CFC) group, IFC group, and IFC + T (IFC with the addition of 0.2 M nanoparticle-encapsulated Trehalose) group. Histological analysis was carried out via H&E staining, ECM components were stained with Modified Weigert staining, and the Gomori Ammonia method was used to stain reticular fibers. Alamar Blue assay was utilized to assess cell viability. Hemocompatibility was evaluated, and samples were processed for immunohistochemistry (TNFα and IL-10). Hemocompatibility was quantified using Terminal Complement Complex (TCC) and Neutrophil elastase (NE) as an indicator. The results of the H&E staining revealed less formation of extracellular ice crystals and intracellular vacuoles in the IFC + T group compared with all other groups. The CFC group's cell viability showed better viability than the IFC group, but the highest viability was exhibited in the IFC + T group (70.96 ± 2.53, P < 0.0001, n = 6). In immunohistochemistry, TNFα levels were lowest in both IFC and IFC + T group, and IL-10 expression had significantly reduced in IFC and IFC + T group. The results suggested that the nanoparticle encapsulated trehalose did not show significant hemocompatibility issues on the cryopreserved heart valves.
Collapse
Affiliation(s)
| | - Qing Chang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Bin Wang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Siyang Huang
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yulong Sui
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qing Fan
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yisheng Song
- Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Dhahri M, Rodriguez-Ruiz V, Aid-Launais R, Ollivier V, Pavon-Djavid G, Journé C, Louedec L, Chaubet F, Letourneur D, Maaroufi RM, Meddahi-Pellé A. In vitro
and in vivo
hemocompatibility evaluation of a new dermatan sulfate-modified PET patch for vascular repair surgery. J Biomed Mater Res B Appl Biomater 2016; 105:2001-2009. [DOI: 10.1002/jbm.b.33733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Manel Dhahri
- Laboratoire de Pharmacologie 04/UR/01-09, Faculté de Médecine, Université de Monastir; Monastir Tunisia
| | - Violeta Rodriguez-Ruiz
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Rachida Aid-Launais
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Véronique Ollivier
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Graciela Pavon-Djavid
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Clément Journé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Liliane Louedec
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Frédéric Chaubet
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Didier Letourneur
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| | - Raoui M. Maaroufi
- Institut Supérieur de Biotechnologie de Monastir, Laboratoire de recherche Génétique, biodiversité et valorisation des bioressources LR11ES41, Université de Monastir; Monastir Tunisia
| | - Anne Meddahi-Pellé
- INSERM, U1148, LVTS, Université Paris 13, Université Paris Diderot; Sorbonne Paris Cité Paris, France
| |
Collapse
|
3
|
Lee CH, Chen CJ, Liu SJ, Hsiao CY, Chen JK. The Development of Novel Biodegradable Bifurcation Stents for the Sustainable Release of Anti-Proliferative Sirolimus. Ann Biomed Eng 2012; 40:1961-70. [DOI: 10.1007/s10439-012-0556-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/21/2012] [Indexed: 12/18/2022]
|
4
|
In-vitro release of anti-proliferative paclitaxel from novel balloon-expandable polycaprolactone stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yang J, Liu F, Tu S, Chen Y, Luo X, Lu Z, Wei J, Li S. Haemo- and cytocompatibility of bioresorbable homo- and copolymers prepared from 1,3-trimethylene carbonate, lactides, and epsilon-caprolactone. J Biomed Mater Res A 2010; 94:396-407. [PMID: 20186738 DOI: 10.1002/jbm.a.32677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of bioresorbable polymers were prepared by ring-opening polymerization of L-lactide (LLA), DL-lactide (DLLA), epsilon-caprolactone (CL) and 1,3-trimethylene carbonate (TMC), using low toxic zinc lactate as catalyst. The various PLLA, PTMC, PCL homopolymers, and PLLA-TMC, PDLLA-TMC, PCL-TMC copolymers with 50/50 molar ratios were characterized by using analytical techniques such as proton nuclear magnetic resonance, gel permeation chromatography, tensiometer, and differential scanning calorimetry. The haemo- and cyto-compatibility were investigated in order to evaluate the potential of the polymers as coating material in drug eluting stents. Haemolysis tests show that all the homo- and copolymers present very low haemolytic ratios, indicating good haemolytic properties. Adhesion and activation of platelets were observed on the surface of PLLA, PCL, PLLA-TMC, and PDLLA-TMC films, while less platelets and lower activation were found on PTMC. The most interesting results were obtained with PCL-TMC which exhibited the lowest degree of activation with few adhered platelets, in agreement with its outstanding anticoagulant properties. Both indirect and direct cytocompatibility studies were performed on the polymers. The relative growth ratio data obtained from the liquid extracts during the 6-day cell culture period indicate that all the polymers present very low cytotoxicity. Microscopic observations demonstrate adhesion, spreading and proliferation of human umbilical vein endothelial cells ECV304. Therefore, it is concluded that these bioresorbable polymers, in particular PCL-TMC, are promising candidate materials as drug loading coating material in drug eluting stents.
Collapse
Affiliation(s)
- Jian Yang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, Hu S, Stock UA. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 2010; 31:2549-54. [PMID: 20061016 DOI: 10.1016/j.biomaterials.2009.11.088] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Decellularized xenogeneic tissue represents an interesting material for heart valve tissue engineering. The prospect objective is removal of all viable cells while preserving extracellular matrix (ECM) integrity. The major concerns of all decellularization protocols remain ECM disruption, immunogenicity and thrombogenicity. Accordingly the aim of this study was visualization of ultrastructural ECM disruption and human immune response and thrombogenicity using different decellularization protocols of porcine heart valves. Porcine pulmonary leaflets were decellularized with four different protocols: sodium deoxycholate, sodium dedecylsulfate, trypsin/EDTA, and trypsin-detergent-nuclease. Then the tissues were processed for histology and two-photon laser scanning microscopy (LSM). For thrombogenicity and immunogenicity testing tissues were incubated with human blood. The histological examination revealed no remaining cells and no significant differences in the ECM histoarchitecture in any group. LSM detected significant ECM alterations in all groups except sodium deoxycholate group with an almost completely preserved ECM. There was no increased immunogenicity between fresh and decellularized tissue. Compared to GA-fixed tissue however significantly increased immune responses and thrombogenicity was observed in all protocols. From our experiment, sodium deoxycholate enables cell removal with almost complete preservation of ECM structures. And all of these four decellularization protocols affected human immunological response and increased thrombogenicity.
Collapse
Affiliation(s)
- Jianye Zhou
- Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Heyde M, Claeyssens M, Schacht EH. Interaction between Proteins and Polyphosphazene Derivatives Having a Galactose Moiety. Biomacromolecules 2008; 9:672-7. [DOI: 10.1021/bm7010278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mieke Heyde
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Marc Claeyssens
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Etienne H. Schacht
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium, and Department of Biochemistry, Physiology and Microbiology, Gent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Takahashi H, Letourneur D, Grainger DW. Delivery of large biopharmaceuticals from cardiovascular stents: a review. Biomacromolecules 2007; 8:3281-93. [PMID: 17929968 PMCID: PMC2606669 DOI: 10.1021/bm700540p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on new and emerging large-molecule bioactive agents delivered from stent surfaces in drug-eluting stents (DESs) to inhibit vascular restenosis in the context of interventional cardiology. New therapeutic agents representing proteins, nucleic acids (small interfering RNAs and large DNA plasmids), viral delivery vectors, and even engineered cell therapies require specific delivery designs distinct from traditional smaller-molecule approaches on DESs. While small molecules are currently the clinical standard for coronary stenting, extension of the DESs to other lesion types, peripheral vasculature, and nonvasculature therapies will seek to deliver an increasingly sophisticated armada of drug types. This review describes many of the larger-molecule and biopharmaceutical approaches reported recently for stent-based delivery with the challenges associated with formulating and delivering these drug classes compared to the current small-molecule drugs. It also includes perspectives on possible future applications that may improve safety and efficacy and facilitate diversification of the DESs to other clinical applications.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, University of Utah, Salt Lake City, UT 84112-5280, USA
| | | | | |
Collapse
|
10
|
Bünger CM, Grabow N, Sternberg K, Ketner L, Kröger C, Lorenzen B, Hauenstein K, Schmitz KP, Kreutzer HJ, Lootz D, Ince H, Nienaber CA, Klar E, Schareck W. Iliac Anastomotic Stenting With a Biodegradable Poly-L-Lactide Stent: A Preliminary Study After 1 and 6 Weeks. J Endovasc Ther 2006; 13:539-48. [PMID: 16928171 DOI: 10.1583/05-1726mr.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To assess the technical feasibility, thrombogenicity, and biocompatibility of a new biodegradable poly-L-lactic acid (PLLA) anastomotic stent. METHODS A polytetrafluoroethylene bifurcated graft was implanted in 17 pigs through a midline abdominal incision. After transverse graft incision, 17 316L stainless steel stents and 17 PLLA stents were randomly implanted at both iliac anastomotic sites and deployed with a 6-mm balloon under direct vision without angiography. Intended follow-up was 1 week in 6 pigs receiving oral acetylsalicylic acid (ASA) and in 7 pigs receiving ASA/clopidogrel; 4 pigs receiving ASA/clopidogrel were followed for 6 weeks. At the end of the study, the segments containing the stents were surgically explanted and processed for histology to measure the mean luminal diameter, intimal thickness, and the vascular injury and inflammation scores. RESULTS Initial technical success of stent placement was achieved in all animals without rupture of the suture. Two pigs died (unrelated to the stent) at 3 days after operation (1 in groups A and B). At 1 week, all PLLA stents showed thrombotic occlusion with the use of ASA alone. In contrast, all PLLA stents remained patent with concurrent administration of ASA/clopidogrel. All metal stents were patent regardless of the antiplatelet regimen. The mean luminal diameter of patent PLLA stents (4.13+/-0.17 mm) was comparable to metal stents (4.27+/-0.35 mm, p=0.78) at 1 week, but significantly diminished at 6 weeks (3.21+/-0.44 versus 4.19+/-0.18 mm, p=0.005). Histological analysis showed no signs of excessive recoil. PLLA stents induced a higher inflammation score (1.79+/-0.56) and more intimal hyperplasia (0.34+/-0.11 mm) compared to metal stents [1.27+/-0.44 mm (p<0.001) and 0.18+/-0.04 mm (p=0.006), respectively] at 6 weeks. Vascular injury was comparable between PLLA and metal stents. CONCLUSION Biodegradable PLLA stents showed higher thrombogenicity and reduced patency compared to metal stents during early follow-up. Although ASA and clopidogrel prevented thrombotic occlusion, the increased inflammatory response and neointima formation remain major concerns of PLLA stents. A solution to this problem might be the incorporation of anti-inflammatory drugs into the PLLA stent.
Collapse
|
11
|
|