1
|
Fukushima K, Ota Y, Kato T. Polydioxanone Derivative Bearing Methoxy Groups towards Bio‐Functional Degradable Polymers Exhibiting Hydration‐Driven Biocompatibility. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kazuki Fukushima
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Japan Science and Technology Agency (JST), PRESTO Honcho, Kawaguchi Saitama 332‐0012 Japan
| | - Yuki Ota
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering The University of Tokyo Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
- Research Initiative for Supra‐Materials Shinshu University Wakasato Nagano 380‐8553 Japan
| |
Collapse
|
2
|
Namiri M, Kazemi Ashtiani M, Abbasalizadeh S, Mazidi Z, Mahmoudi E, Nikeghbalian S, Aghdami N, Baharvand H. Improving the biological function of decellularized heart valves through integration of protein tethering and three-dimensional cell seeding in a bioreactor. J Tissue Eng Regen Med 2017; 12:e1865-e1879. [PMID: 29164801 DOI: 10.1002/term.2617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/22/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022]
Abstract
Decellularized xenogeneic heart valves (DHVs) are promising products for valve replacement. However, the widespread clinical application of such products is limited due to the risk of immune reaction, progressive degeneration, inflammation, and calcification. Here, we have developed an optimized decellularization protocol for a xenogeneic heart valve. We improved the biological function of DHVs by protein tethering onto DHV and three-dimensional (3D) cell seeding in a bioreactor. Our results showed that heart valves treated with a Triton X-100 and sodium deoxycholate-based protocol were completely cell-free, with preserved biochemical and biomechanical properties. The immobilization of stromal derived factor-1α (SDF-1α) and basic fibroblast growth factor on DHV significantly improved recellularization with endothelial progenitor cells under the 3D culture condition in the bioreactor compared to static culture conditions. Cell phenotype analysis showed higher fibroblast-like cells and less myofibroblast-like cells in both protein-tethered DHVs. However, SDF-DHV significantly enhanced recellularization both in vitro and in vivo compared to basic fibroblast growth factor DHV and demonstrated less inflammatory cell infiltration. SDF-DHV had less calcification and platelet adhesion. Altogether, integration of SDF-1α immobilization and 3D cell seeding in a bioreactor might provide a novel, promising approach for production of functional heart valves.
Collapse
Affiliation(s)
- Mehrnaz Namiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Mazidi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.
Collapse
Affiliation(s)
- Brendan M. Watson
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Abstract
The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.
Collapse
Affiliation(s)
- Maria Cristina Tanzi
- Politecnico di Milano, Bioengineering Department, P.zza L. da Vinci, Milano, Italy.
| |
Collapse
|
5
|
Lopez-Donaire ML, Santerre JP. Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J Appl Polym Sci 2014. [DOI: 10.1002/app.40328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M. Luisa Lopez-Donaire
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| |
Collapse
|
6
|
Hao N, Wang YB, Zhang SP, Shi SQ, Nakashima K, Gong YK. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating. J Biomed Mater Res A 2013; 102:2972-81. [DOI: 10.1002/jbm.a.34967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ni Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Yan-Bing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Shi-Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Su-Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | | | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| |
Collapse
|
7
|
Zhang M, Wang K, Wang Z, Xing B, Zhao Q, Kong D. Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2639-2648. [PMID: 22815052 DOI: 10.1007/s10856-012-4721-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
In this study, natural lecithin was incorporated into cholesterol-poly(ε-caprolactone) (Chol-PCL) by solution blending in order to modify the performance of the hydrophobic and bio-inert PCL. The fibrous Chol-PCL/lecithin membranes were fabricated by electrospinning, and the surface morphology and properties were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, and mechanical tensile testing. The blood compatibility of the scaffolds was evaluated by in vitro hemolysis assay. The cytocompatibility of the scaffolds was investigated by cell adhesion and proliferation using bone-marrow mesenchymal stem cells (MSCs). Subcutaneous implantation was also performed to evaluate the in vivo inflammatory reaction. The tubular tissue-engineered vascular graft (TEVG) was further constructed by rolling cell sheet comprising fibrous membrane and MSCs. Furthermore, endothelial cells (ECs) were seeded onto the lumen of the graft with the aim to form vascular endothelium. The preliminary results indicate that electrospun Chol-PCL/lecithin scaffolds show improved hemocompatibility and cytocompatibility compared with neat Chol-PCL, and combining the Chol-PCL/lecithin fibrous scaffold with MSCs and ECs with well controlled distribution is a promising strategy for constructing TEVGs.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
8
|
STUDY ON INDUCING MINERALIZATION OF POLYLACTIDE CONTAINING PHOSPHORYLCHOLINE. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.11336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Meng S, Guo Z, Wang Q, Liu Z, Wang Q, Zhong W, Du Q. Studies on a Novel Multi-sensitive Hydrogel: Influence of the Biomimetic Phosphorylcholine End-Groups on the PEO–PPO–PEO Tri-block Co-polymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:651-64. [DOI: 10.1163/092050610x489312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Sheng Meng
- a The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhang Guo
- b The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Qiong Wang
- c The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - ZongJun Liu
- d Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P. R. China
| | - QiHong Wang
- e Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Wei Zhong
- f The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China; Shanghai Center for Biomedical Engineering, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201201, P. R. China
| | - QiangGuo Du
- g The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
Ye X, Hu X, Wang H, Liu J, Zhao Q. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells. Acta Biomater 2012; 8:1057-67. [PMID: 22122977 DOI: 10.1016/j.actbio.2011.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Polyelectrolyte multilayer film modification could be an effective method to reduce the immunological and inflammatory response of the xenogeneic scaffold in vivo, and may also be applied to tissue-engineered heart valve in contact with blood. The objectives of this study are to test heparin-chitosan multilayer film as an antithrombotic coating reagent for decellularized aortic heart valve and the biocompatibility of the modified valvular surface. The adhesion and geometric deformation of platelets were demonstrated by scanning electron microscopy. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Moreover, the leukocytes' adhesion, erythrocyte hemolysis, and whole blood clotting time studies were performed to gain information on the hemocompatibility of this biomaterial. Human-blood-derived endothelial progenitor cells (EPCs) were cultured and the adhesion and growth of EPCs on the surface-modified PDAV were assessed. The results showed that heparin-chitosan multilayer film could be coated on the decellularized valvular scaffolds, and improved their hemocompatibility with respect to a substantial reduction of platelet adhesion and activation. The modified valve also significantly reduced leukocytes adhesion, erythrocyte hemolysis, and whole blood clotting time. Seeding with EPCs achieved a confluent monolayer on the surface of the decellularized matrix. The in vitro studies performed in this work suggest that it may be reasonable to use heparin-chitosan multilayer film as a means of surface modification to improve the blood compatibility of decellularized valvular scaffold.
Collapse
|
11
|
Chen Y, Chen J, Liu Y, Luo X, Li S. Micelles formed by self-assembling of low molecular weight phosphorylcholine-containing poly(L-lactide). POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.2054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jing Chen
- College of Polymer Science and Engineering; Sichuan University; Chengdu; 610065; China
| | - Yanjun Liu
- College of Polymer Science and Engineering; Sichuan University; Chengdu; 610065; China
| | | | - Suming Li
- Institut des Biomolécules Max Mousseron (UMR CNRS 5247); Université Montpellier I; 34060; Montpellier; France
| |
Collapse
|
12
|
Wang Z, Wan P, Ding M, Yi X, Li J, Fu Q, Tan H. Synthesis and micellization of new biodegradable phosphorylcholine-capped polyurethane. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24632] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Xiaofen Hu, Gongyan Liu, Jian Ji, Dezeng Fan, Xinhao Yan. Lipid-like Diblock Copolymer as an Additive for Improving the Blood Compatibility of Poly(lactide-co-glycolide). J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510384836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To optimize the blood biocompatibility of poly(lactide-coglycolide) (PLGA), lipid-like diblock copolymer poly(DL-lactide)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PLA-b-PMPC) was employed as a surface-modifying additive. The blends of PLGA and PLA-b-PMPC coated poly(ethylene terephthalate) membranes were prepared by dip-coating. ATR-FTIR spectroscopy showed the incorporation of phosphorylcoline groups in the blends and contact angle results indicated that the hydrophilicity of the blends improved with increasing PLA-b-PMPC content. The plasma recalcification time of polymer coating was prolonged and the amount of adherent platelets on coating surface was decreased by introducing PLA-b-PMPC. The adhesion of polymer coating on the gold electrode of quartz crystal microbalance was monitored and PLGA containing PLA-b-PMPC additives showed excellent polymer—metal adhesion. These results show that the blends of PLGA and lipid-like PLA-b-PMPC could be used as high performance biodegradable polymer coatings for blood contact medical devices.
Collapse
Affiliation(s)
- Xiaofen Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Gongyan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dezeng Fan
- Advanced Technology & Materials Corp., Ltd., Beijing 100081, China
| | - Xinhao Yan
- Advanced Technology & Materials Corp., Ltd., Beijing 100081, China,
| |
Collapse
|
14
|
Synthesis of a novel biodegradable polyurethane with phosphatidylcholines. Int J Mol Sci 2010; 11:1870-7. [PMID: 20480047 PMCID: PMC2871143 DOI: 10.3390/ijms11041870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/24/2022] Open
Abstract
A novel polyurethane was successfully synthesized by chain-extension of biodegradable poly (l-lactide) functionalized phosphatidylcholine (PC) with hexamethylene diisocyanate (HDI) as chain extender (PUR-PC). The molecular weights, glass transition temperature (Tg) increased significantly after the chain-extension. The hydrophilicity of PUR-PC was better than the one without PC, according to a water absorption test. Moreover, the number of adhesive platelets and anamorphic platelets on PUR-PC film were both less than those on PUR film. These preliminary results suggest that this novel polyurethane might be a better scaffold than traditional biodegradable polyurethanes for tissue engineering due to its better blood compatibility. Besides, this study also provides a new method to prepare PC-modified biodegradable polyurethanes.
Collapse
|
15
|
Cooper BM, Chan-Seng D, Samanta D, Zhang X, Parelkar S, Emrick T. Polyester-graft-phosphorylcholine prepared by ring-opening polymerization and click chemistry. Chem Commun (Camb) 2009:815-7. [DOI: 10.1039/b817600k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Chen Y, Chen N, Qiu Z, Wang L, Wan C, Luo X, Li S. Behavior of Endothelial Cells Regulated by a Dynamically Changed Microenvironment of Biodegradable PLLA-PC. Macromol Biosci 2008; 9:413-20. [DOI: 10.1002/mabi.200800326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Two-dimensional correlation ATR-FTIR studies on PEO–PPO–PEO tri-block copolymer and its phosphorylcholine derivate as thermal sensitive hydrogel systems. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Chung YC, Chen IH, Chen CJ. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008; 29:1807-16. [PMID: 18242693 DOI: 10.1016/j.biomaterials.2007.12.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 12/23/2007] [Indexed: 11/30/2022]
Abstract
In order to enhance the biocompatibility and cell affinity of metal nanoparticles for biosensing and drug delivering applications, we prepared the phospholipid derivatives containing disulfide groups to modify silver nanoparticle surfaces. By adding sodium borohydride to reduce both disulfide bonds of the derivatives and silver ions simultaneously, the generated thiol groups can be reacted with newborn silver atoms immediately to generate nanoclusters. The assemblies consisted of either phosphorylcholine (PC) or phosphorylethanolamine (PE) head groups, which made the silver clusters biocompatibile. Transmission electron microscope (TEM) and optical absorption spectra assisted in modulating reaction conditions, demonstrating that a surfactant/Ag ratio of 0.4 led to the formation of uniform, well-dispersed spherical particles about 3.8 nm in diameter. X-ray photoelectron spectra and infrared spectra also illustrated the elemental and molecular structures of nanoparticles. The insertion of rhodamine dye into the surfactant layer enabled the nanoparticles to be used as a fluorescent probe. In cell culture tests, the nanoparticles were internalized into platelet or fibroblast cells in a short period of incubation without harming the cells.
Collapse
Affiliation(s)
- Yi-Chang Chung
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC.
| | | | | |
Collapse
|
19
|
Petzold C, Lyngstadaas SP, Rubert M, Monjo M. UV-induced chemical coating of titanium surfaces with eicosapentaenoic acid. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b811932e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yin T, Wang G, Ruan C, Guzman R, Guidoin R. In-vitro assays of polymer-coated stents eluting platelet glycoprotein IIb/IIIa receptor monoclonal antibody. J Biomed Mater Res A 2007; 83:861-7. [PMID: 17567855 DOI: 10.1002/jbm.a.31369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIb/IIIa receptor has potent antiplatelet and antithrombotic characteristics shown to reduce thrombus-related major complications after coronary angioplasty. This mAb can be incorporated in drug-eluting stents capable of releasing single or multiple bioactive agents into the bloodstream and surrounding tissues. Stents eluting the monoclonal mouse anti-human platelet glycoprotein IIb/IIIa antibody SZ-262 were tested for their effectiveness in improving the blood compatibility and the antithrombotic characteristics by immunofluorescence and scanning electron microscopy (SEM). The SEM results convincingly demonstrated that the surface of the mAb eluting-stents was completely free of platelet uptake without any sign of cellular debris or proteinaceous deposits, compared with controls. The deformation index of platelets on the L-polylactic acid (L-PLA) coated stents were higher than bare Nitinol intravascular stents, as shown by SEM images. Monoclonal antibody to the platelet GP IIb/IIIa receptor, when eluting from L-PLA polymer-coated stents, effectively inhibits platelet aggregation in the stent microenvironment, thus demonstrating a potential capacity of reducing thrombosis, improving blood flow and arterial patency rates, and inhibiting cyclic blood flow variations. These results highlight the possibility of such monoclonal antibody-eluting stents to reduce or possibly eliminate thrombosis and in-stent restenosis.
Collapse
Affiliation(s)
- Tieying Yin
- Bioengineering College of Chongqing University, Chongqing, China
| | | | | | | | | |
Collapse
|
21
|
Kannan RY, Salacinski HJ, Vara DS, Odlyha M, Seifalian AM. Review paper: Principles and Applications of Surface Analytical Techniques at the Vascular Interface. J Biomater Appl 2006; 21:5-32. [PMID: 16684795 DOI: 10.1177/0885328206065728] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Surface properties have been found to be one of the key parameters which cause degradation and of thrombogenicity in all polymers used in biomedical devices, thus signifying the importance and the necessity for quantitative and accurate characterization of the polymer surface itself as used in the construction of the device. The characterization techniques employed generally involve thermal and spectroscopic measurements, in which class the electrochemical investigations and scanning probe microscopies can also be included. Current hypotheses on the correlations that exist between surface parameters and hemocompatibility and degradation of polymers are examined herein, but concentrating on the field of clinically utilized polymeric materials as used within medical devices themselves. Furthermore, this review provides a brief but complete synopsis of these techniques and other emerging ones, which have proven useful in the analysis of the surface properties of polymeric materials as used in the construction of cardiovascular devices. Statements and examples are given as to how specific information can be acquired from these differing methodologies and how it aids in the design and development of new polymers for usage in biomedical device construction.
Collapse
Affiliation(s)
- Ruben Y Kannan
- Biomaterials & Tissue Engineering Centre (BTEC), Academic Division of Surgical and Interventional Sciences, University College London, London, UK
| | | | | | | | | |
Collapse
|
22
|
Meng S, Zhong W, Chou LL, Wang Q, Liu Z, Du Q. Phosphorylcholine end-capped poly-ɛ-caprolactone: A novel biodegradable material with improved antiadsorption property. J Appl Polym Sci 2006. [DOI: 10.1002/app.25288] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Gong YK, Mwale F, Wertheimer MR, Winnik FM. Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylcholine functionalities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 15:1423-34. [PMID: 15648572 DOI: 10.1163/1568562042368022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylcholine (PC) groups were grafted onto ammonia plasma-treated biaxially-oriented polypropylene (BOPP) surfaces, via (a) reductive amination of phosphorylcholine glyceraldehyde and (b) a two-step procedure involving the chemical amplification of surface amine groups with tris(2-aminoethyl amine) and subsequent reductive amination of phosphorylcholine glyceraldehyde. The occurrence of grafting was ascertained by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared (ATR-FT-IR) spectroscopy. The wettability of PC-modified surfaces was assessed by dynamic contact-angle measurements using the Wilhelmy plate method. Human U937 macrophages adhered and proliferated to a significantly larger extent on PC-modified surfaces, compared to unmodified or ammonia plasma-modified BOPP.
Collapse
Affiliation(s)
- Yong-Kuan Gong
- Department of Chemistry and Faculty of Pharmacy, University of Montreal, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
24
|
Chung YC, Chiu YH, Wu YW, Tao YT. Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 2005; 26:2313-24. [PMID: 15585234 DOI: 10.1016/j.biomaterials.2004.06.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/25/2004] [Indexed: 11/21/2022]
Abstract
Several phospholipid-based disulfide molecules were synthesized and attached onto the gold-coated silicon wafer using the self-assembling method. The syntheses of these surface-modifying agents were conducted by introducing bromoethylphosphorate (PBr), phosphorylcholine (PC) or phosphorylethanolamine (PE) groups on the terminals of a dialkyl disulfide. After disulfides adsorption onto gold substrate surfaces, the composition, the film thickness, and the conformational order of self-assembled monolayer surfaces were explored and discussed in detail based on reflection-absorption infrared spectroscopy, contact angle measurement, Auger electron spectroscopy, X-ray photoelectron spectroscopy, and so on. The monolayer having the PBr end group could also be converted to a PC surface by treating with trimethylamine. The model functional surfaces of Au-SC11-PC, -PE, -PBr, -OH or corresponding mixed layers were used to mimic biomembrane surfaces. The monolayer having PC groups was found to reduce fibrinogen adsorption as evaluated from protein adsorption experiments using quartz crystal microbalance. It also showed relatively low platelet adherence compare to the glass, PBr and PE surfaces. The cell viability test also revealed that the PC surface displayed lower cytotoxicity than other surfaces.
Collapse
Affiliation(s)
- Yi Chang Chung
- Department of Chemical and Material Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Road, Kaohsiung 811, Taiwan, ROC
| | | | | | | |
Collapse
|
25
|
Huang XJ, Xu ZK, Wan LS, Wang ZG, Wang JL. Surface modification of polyacrylonitrile-based membranes by chemical reactions to generate phospholipid moieties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:2941-2947. [PMID: 15779969 DOI: 10.1021/la047419d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel approach for the surface modification of poly(acrylonitrile-co-2-hydroxyethyl methacrylate) (PANCHEMA) membranes by introducing phospholipid moieties is presented, which involved the reaction of the hydroxyl groups on the membrane surface with 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP) followed by the ring-opening reaction of COP with trimethylamine. The chemical changes of phospholipid-modified acrylonitrile-based copolymers (PMANCP) membranes were characterized by Fourier transfer infrared spectroscopy and X-ray photoelectron spectroscopy. The surface properties of PMANCP membranes were evaluated by pure water contact angle, protein adsorption, and platelet adhesion measurements. Pure water contact angles measured by the sessile drop method on PMANCP membranes were obviously lower than those measured on the PANCHEMA membranes and decreased with the increase of the content of phospholipid moieties on the membrane surface. It was found that the bovine serum albumin adsorption and platelet adhesion were suppressed significantly with the introduction of phospholipid moieties on the membranes surface. These results demonstrated that the described process was an efficient way to improve the surface biocompatibility for the acrylonitrile-based copolymer membrane.
Collapse
Affiliation(s)
- Xiao-Jun Huang
- Institute of Polymer Science, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Nederberg F, Bowden T, Hilborn J. Induced surface migration of biodegradable phosphoryl choline functional poly(trimethylene carbonate). POLYM ADVAN TECHNOL 2005. [DOI: 10.1002/pat.556] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 2004; 381:534-46. [PMID: 15723256 DOI: 10.1007/s00216-004-2805-9] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 12/19/2022]
Affiliation(s)
- Yasuhiko Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
29
|
Feng W, Brash J, Zhu S. Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/pola.20095] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Albertsson AC, Varma IK. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003; 4:1466-86. [PMID: 14606869 DOI: 10.1021/bm034247a] [Citation(s) in RCA: 1191] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aliphatic polyesters prepared by ring-opening polymerization of lactones are now used worldwide as bioresorbable devices in surgery (orthopaedic devices, sutures, stents, tissue engineering, and adhesion barriers) and in pharmacology (control drug delivery). This review presents the various methods of the synthesis of polyesters and tailoring the properties by proper control of molecular weight, composition, and architecture so as to meet the stringent requirements of devices in the medical field. The effect of structure on properties and degradation has been discussed. The applications of these polymers in the biomedical field are described in detail.
Collapse
Affiliation(s)
- Ann-Christine Albertsson
- Department of Fibre and Polymer Technology, The Royal Institute of Technology, S-10044 Stockholm, Sweden
| | | |
Collapse
|