1
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
2
|
Emami A, Talaei-Khozani T, Vojdani Z, Zarei Fard N. Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 109:19-32. [PMID: 32627321 DOI: 10.1002/jbm.b.34677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
Bone regeneration can be possible through grafts or engineered bone replacement when bone defects are larger than the critical size. Decellularized bone extracellular matrix (ECM) is an alternative that is able to accelerate tissue regeneration, while decellularization protocols influence engineered bone quality. The objective of this study was to compare the quality of decellularized bone produced through different methods. Four decellularization methods were employed using (a) sodium lauryl ether sulfate (SLES), (b) sodium dodecyl sulfate (SDS) 0.5%, (c) SDS 1% and (d) trypsin/EDTA. All samples were then washed in triton X-100. DNA quantification, hematoxylin and eosin, and Hoechst staining showed that although DNA was depleted in all scaffolds, treatment with SLES led to a significantly lower DNA content. Glycosaminoglycan quantification, Raman confocal microscopy, alcian blue and PAS staining exhibited higher carbohydrate retention in the scaffolds treated with SLES and SDS 0.5%. Raman spectra, scanning electron microscopy and trichrom Masson staining showed more collagen content in SLES and SDS-treated scaffolds compared to trypsin/EDTA-treated scaffolds. Therefore, although trypsin/EDTA could efficiently decellularize the scaffolds, it washed out the ECM contents. Also, both MTT and attachment tests showed a significantly higher cell viability in SLES-treated scaffolds. Raman spectra revealed that while the first washing procedure did not remove SLES traces in the scaffolds, excessive washing reduced ECM contents. In conclusion, SLES and, to a lesser degree, SDS 0.5% protocols could efficiently preserve ultrastructure and ECM constituents of decellularized bone tissue and can thus be suggested as nontoxic and safe protocols for bone regeneration.
Collapse
Affiliation(s)
- Asrin Emami
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei Fard
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Kuo TY, Chien CS, Liu CW, Lee TM. Comparative investigation into effects of ZrO 2 and Al 2O 3 addition in fluorapatite laser-clad composite coatings on Ti6Al4V alloy. Proc Inst Mech Eng H 2018; 233:157-169. [PMID: 30526304 DOI: 10.1177/0954411918816113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Composite coatings consisting of fluorapatite mixed with 20 wt% yttria (3 mol%) stabilized cubic phase zirconia (c-ZrO2, 3Y-TZP) or 20 wt% alumina (α-Al2O3) were deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system. The interface morphology, phase composition, micro-hardness and biological properties of the two coatings were examined and compared. The results showed that the fluorapatite/Al2O3 specimen underwent a greater inter-diffusion at the interface between the coating layer and the transition layer than the fluorapatite/ZrO2 specimen. During the cladding process, the ZrO2 and Al2O3 components of the coating were completely decomposed or underwent phase transformation. In addition, the fluorapatite was partially decomposed. For both specimens, the coating layers contained fluorapatite, CaF2 and CaTiO3 phases. The coating layer of the fluorapatite/ZrO2 specimen additionally contained TTCP, CaO, CaZrO3 and m-ZrO2 (monoclinic phase), while that of the fluorapatite/Al2O3 specimen contained β-TCP, CaAl2O4 and θ-Al2O3. The average micro-hardness of the fluorapatite/ZrO2 coating layer (1300 HV) was approximately 200 HV higher than that of the fluorapatite/Al2O3 coating layer (1100 HV). Both specimens generated dense bone-like apatite following immersion in simulated body fluid for 3 days. In other words, both specimens had a good in vitro bioactivity. However, the fluorapatite/ZrO2 specimen showed a better initial attachment and spread of osteoblast-like osteosarcoma MG63 cells than the fluorapatite/Al2O3 specimen in in vitro biocompatibility tests performed for 24 h.
Collapse
Affiliation(s)
- Tsung-Yuan Kuo
- 1 Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan
| | - Chi-Sheng Chien
- 2 Department of Orthopaedics, Chimei Foundation Hospital, Tainan
- 3 Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan
| | - Cheng-Wei Liu
- 1 Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan
| | - Tzer-Min Lee
- 4 Institute of Oral Medicine, National Cheng Kung University, Tainan
- 5 School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung
| |
Collapse
|
4
|
Varanasi VG, Odatsu T, Bishop T, Chang J, Owyoung J, Loomer PM. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. J Biomed Mater Res A 2016; 104:2604-15. [PMID: 27279631 DOI: 10.1002/jbm.a.35795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, 75246
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Timothy Bishop
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Joyce Chang
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Jeremy Owyoung
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Peter M Loomer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, 10010
| |
Collapse
|
5
|
Balasundaram G, Storey DM, Webster TJ. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density. Int J Nanomedicine 2015; 10:527-35. [PMID: 25609958 PMCID: PMC4298345 DOI: 10.2147/ijn.s65308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications.
Collapse
Affiliation(s)
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Si J, Zhang J, Liu S, Zhang W, Yu D, Wang X, Guo L, Shen SGF. Characterization of a micro-roughened TiO2/ZrO2 coating: mechanical properties and HBMSC responses in vitro. Acta Biochim Biophys Sin (Shanghai) 2014; 46:572-81. [PMID: 24850303 DOI: 10.1093/abbs/gmu040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that using ZrO2 as a second phase to bioceramics can significantly increase the bonding strength of plasma-sprayed composite material. In the present study, micro-roughened titanium dioxide/zirconia (TiO2/ZrO2) (30 wt% ZrO2) coating and TiO2 coating were plasma-sprayed onto Ti plates. The micro-structural characteristics and mechanical properties of both coatings were investigated. Furthermore, the biological behavior and osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) on both TiO2/ZrO2 and TiO2 coatings were compared. The results indicated that the shear bond strength and microhardness of TiO2/ZrO2 coating were statistically higher than those of TiO2 coating. Scanning electron microscope observation revealed that more irregularly shaped protuberances and denser pores were formed on the surface of TiO2/ZrO2 coating compared with those of TiO2 coating. Further comparative analysis of HBMSC proliferation and osteogenic differentiation on both coatings showed that significantly higher cellular alkaline phosphatase activity and expression levels of Runx2 and Osterix at day 10 after osteogenic culture were found on TiO2/ZrO2 coating compared with TiO2 coating, while no statistically significant difference in cell proliferation and extracellular calcium deposition was observed. The present study suggests that TiO2/ZrO2 coating may be favorable for dental implant applications.
Collapse
Affiliation(s)
- Jiawen Si
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sha Liu
- Shanghai United Stem Cell Biotechnology Co. Ltd, Shanghai 200333, China
| | - Wenbin Zhang
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Dedong Yu
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lihe Guo
- Shanghai United Stem Cell Biotechnology Co. Ltd, Shanghai 200333, China Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Steve G F Shen
- Department of Oral and Craniomaxillofacial Science, Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Katunar MR, Gomez Sanchez A, Ballarre J, Baca M, Vottola C, Orellano JC, Schell H, Duffo G, Cere S. Can anodised zirconium implants stimulate bone formation? Preliminary study in rat model. Prog Biomater 2014; 3:24. [PMID: 29470722 PMCID: PMC5151104 DOI: 10.1007/s40204-014-0024-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022] Open
Abstract
The mechanical properties and good biocompatibility of zirconium and some of its alloys make these materials good candidates for biomedical applications. The attractive in vivo performance of zirconium is mainly due to the presence of a protective oxide layer. In this preliminary study, the surface of pure zirconium modified by anodisation in acidic media at low potentials to enhance its barrier protection given by the oxides and osseointegration. Bare, commercially pure zirconium cylinders were compared to samples anodised at 30 V through electrochemical tests and scanning electron microscopy (SEM). For both conditions, in vivo tests were performed in a rat tibial osteotomy model. The histological features and fluorochrome-labelling changes of newly bone formed around the implants were evaluated on the non-decalcified sections 63 days after surgery. Electrochemical tests and SEM images show that the anodisation treatment increases the barrier effect over the material and the in vivo tests show continuous newly formed bone around the implant with a different amount of osteocytes in their lacunae depending on the region. There was no significant change in bone thickness around either kind of implant but the anodised samples had a significantly higher mineral apposition, suggesting that the anodisation treatment stimulates and assists the osseointegration process. We conclude that anodisation treatment at 30 V can stimulate the implant fixation in a rat model, making zirconium a strong candidate material for permanent implants.
Collapse
Affiliation(s)
- Maria R Katunar
- Corrosion Division, INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo 4302, B7608FDQ, Mar del Plata, Argentina.
| | - Andrea Gomez Sanchez
- Corrosion Division, INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo 4302, B7608FDQ, Mar del Plata, Argentina
| | - Josefina Ballarre
- Corrosion Division, INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo 4302, B7608FDQ, Mar del Plata, Argentina
| | - Matias Baca
- Traumatologia y Ortopedia, Hospital Interzonal General de Agudos "Oscar Alende", Mar del Plata, Argentina
| | - Carlos Vottola
- Traumatologia y Ortopedia, Hospital Interzonal General de Agudos "Oscar Alende", Mar del Plata, Argentina
| | - Juan C Orellano
- Traumatologia y Ortopedia, Hospital Interzonal General de Agudos "Oscar Alende", Mar del Plata, Argentina
| | - Hanna Schell
- Center of Muskuloeskeletal Surgery, Charite-Universitätsmedizin Berlin, Augustenburger Plats 1, D-13353, Berlin, Germany
| | - Gustavo Duffo
- Departamento de Materiales, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
- Universidad Nacional de Gral. San Martín, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Silvia Cere
- Corrosion Division, INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo 4302, B7608FDQ, Mar del Plata, Argentina
| |
Collapse
|
8
|
Yi D, Wu C, Ma B, Ji H, Zheng X, Chang J. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility. J Biomater Appl 2013; 28:1343-53. [DOI: 10.1177/0885328213508165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO44– and Mg2+ ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility.
Collapse
Affiliation(s)
- Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Bing Ma
- School of Life Science, East China Normal University, Shanghai, China
| | - Heng Ji
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Mueller CK, Solcher P, Peisker A, Mtsariashvilli M, Schlegel KA, Hildebrand G, Rost J, Liefeith K, Chen J, Schultze-Mosgau S. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:e1-8. [DOI: 10.1016/j.oooo.2011.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/14/2011] [Accepted: 10/24/2011] [Indexed: 10/28/2022]
|
10
|
Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds? J Biomed Mater Res A 2013; 102:275-94. [PMID: 23468287 DOI: 10.1002/jbm.a.34691] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/16/2013] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles.
Collapse
Affiliation(s)
- Arie Bruinink
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials - Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying. J Mech Behav Biomed Mater 2012; 9:22-33. [DOI: 10.1016/j.jmbbm.2011.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022]
|
12
|
Deng XL, Sui G, Zhao ML, Chen GQ, Yang XP. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:117-30. [PMID: 17274455 DOI: 10.1163/156856207779146123] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds were prepared via electrospinning. The structure and morphology of the scaffolds were investigated using scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The experimental results showed that the average diameter of hybrid nanofiber was similar to that of pure poly(L-lactic acid) fiber, but a new surface bonding (COO-) was formed in hybrid nanofiber which made the surface of the fiber coarse. The weight loss and water uptake of pure poly(L-lactic acid) scaffolds increased continuously and the viscosity-average molecular weight decreased in the phosphate buffer solution as time passed, while those of hybrid scaffolds were very much slowed down because the dissolving of hydroxyapatite particles acted as a physical barrier and blocked off the entry of water. The biocompatibility of the scaffold has been investigated by human osteosarcoma MG-63 cell culture on the scaffold. The preliminary results showed that cells were well adhered and proliferated better on the hybrid scaffolds than pure scaffolds.
Collapse
Affiliation(s)
- Xu-Liang Deng
- School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | | | | | | | | |
Collapse
|
13
|
Zhang Z, Wang K, Bai C, Li X, Dang X, Zhang C. The influence of UV irradiation on the biological properties of MAO-formed ZrO2. Colloids Surf B Biointerfaces 2012; 89:40-7. [PMID: 21920713 DOI: 10.1016/j.colsurfb.2011.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 08/20/2011] [Accepted: 08/24/2011] [Indexed: 11/16/2022]
|
14
|
Rainer A, Spadaccio C, Sedati P, De Marco F, Carotti S, Lusini M, Vadalà G, Di Martino A, Morini S, Chello M, Covino E, Denaro V, Trombetta M. Electrospun Hydroxyapatite-Functionalized PLLA Scaffold: Potential Applications in Sternal Bone Healing. Ann Biomed Eng 2011; 39:1882-90. [DOI: 10.1007/s10439-011-0289-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
|
15
|
Varanasi V, Saiz E, Loomer P, Ancheta B, Uritani N, Ho S, Tomsia A, Marshall S, Marshall G. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater 2009; 5:3536-47. [PMID: 19497391 DOI: 10.1016/j.actbio.2009.05.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 04/15/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
This study tested the hypothesis that bioactive coating glass (SiO(2)-CaO-P(2)O(5)-MgO-K(2)O-Na(2)O system), used for implant coatings, enhanced the induction of collagen type 1 synthesis and in turn enhanced the expression of downstream markers alkaline phosphatase, Runx2 and osteocalcin during osteoblast differentiation. The ions from experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were added to osteoblast-like MC3T3-E1 subclone 4 cultures as a supplemented ion extract (glass conditioned medium (GCM)). Ion extracts contained significantly higher concentrations of Si and Ca (Si, 47.9+/-10.4 ppm; Ca, 69.8+/-14.0 for 45S5; Si, 33.4+/-3.8 ppm; Ca, 57.1+/-2.8 ppm for 6P53-b) compared with the control extract (Si<0.1 ppm, Ca 49.0 ppm in alpha-MEM) (ANOVA, p<0.05). Cell proliferation rate was enhanced (1.5x control) within the first 3 days after adding 45S5 and 6P53-b GCM. MC3T3-E1 subclone 4 cultures were then studied for their response to the addition of test media (GCM and control medium along with ascorbic acid (AA; 50 ppm)). Each GCM+AA treatment enhanced collagen type 1 synthesis as observed in both gene expression results (day 1, Col1alpha1, 45S5 GCM+AA: 3x control+AA; 6P53-b GCM+AA: 4x control+AA; day 5, Col1alpha2, 45S5 GCM+AA: 3.15x control+AA; 6P53-b GCM+AA: 2.35x control+AA) and in histological studies (Picrosirius stain) throughout the time course of early differentiation. Continued addition of each GCM and AA treatment led to enhanced expression of alkaline phosphatase (1.4x control+AA after 5 days, 2x control+AA after 10 days), Runx2 (2x control+AA after 7 days) and osteocalcin gene (day 3, 45S5 GCM+AA: 14x control+AA; day 5, 6P53-b GCM+AA: 19x control+AA) and protein expression (40x-70x control+AA after 6 days). These results indicated the enhanced effect of bioactive glass ions on key osteogenic markers important for the bone healing process.
Collapse
|
16
|
Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 2009; 37:1376-89. [PMID: 19418224 DOI: 10.1007/s10439-009-9704-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
Cartilage and bone tissue engineering has been widely investigated but is still hampered by cell differentiation and transplant integration issues within the constructs. Scaffolds represent the pivotal structure of the engineered tissue and establish an environment for neo-extracellular matrix synthesis. They can be associated to signals to modulate cell activity. In this study, considering the well reported role of hydroxyapatite (HA) in cartilage repair, we focused on the putative chondrogenic differentiation of human mesenchymal stem cells (hMSCs) following culture on membranes of electrospun fibers of poly-L-lactic acid (PLLA) loaded with nanoparticles of HA. hMSCs were seeded on PLLA/HA and bare PLLA membranes and cultured in basal medium, using chondrogenic differentiation medium as a positive control. After 14 days of culture, SOX-9 positive cells could be detected in the PLLA/HA group. Cartilage specific proteoglycan immunostain confirmed the presence of neo-extracellular-matrix production. Co-expression of CD29, a typical surface marker of MSCs and SOX-9, suggested different degrees in the differentiation process. We developed a hydroxyapatite functionalized scaffold with the aim to recapitulate the native histoarchitecture and the molecular signaling of osteochondral tissue to facilitate cell differentiation toward chondrocyte. PLLA/HA nanocomposites induced differentiation of hMSCs in a chondrocyte-like phenotype with generation of a proteoglycan based matrix. This nanocomposite could be an amenable alternative scaffold for cartilage tissue engineering using hMSCs.
Collapse
|
17
|
Nakada H, Sakae T, LeGeros RZ, LeGeros JP, Suwa T, Numata Y, Kobayashi K. Early Tissue Response to Modified Implant Surfaces Using Back Scattered Imaging. IMPLANT DENT 2007; 16:281-9. [PMID: 17846544 DOI: 10.1097/id.0b013e3180e92a78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE It is now well known that implant surface properties affect osseointegration. Grit-blasting with abrasives and coating by plasma are methods to modify implant surfaces. This study aimed to compare the direction of new bone formation associated with three types of surfaces. MATERIALS AND METHODS Titanium (Ti) alloy rods grit-blasted with alumina abrasive (Group 1, G1), with apatitic abrasive (Group 2, G2), and with apatitic abrasive and plasma-sprayed with hydroxyapatite (Group 3, G3) were implanted in surgically created defects in tibias of New Zealand white rabbits for 2 and 4 weeks. After sacrifice, the implants and surrounding bones were obtained and analyzed using back scattered imaging. RESULTS Differences in patterns of bone formation among the groups were observed: originating from the cortical bone towards the implant surface (Type A), surrounding the implant (Type B) and originating from the medullary cavity (Type C). G1 and G3 showed Types A and B while G2 exhibited Types A, B and C. After 4 weeks, greater amount of new bone was observed in G2 group compared with those in G1 and G3 groups. CONCLUSIONS This study demonstrated that patterns of bone formation are influenced by methods of surface modification.
Collapse
Affiliation(s)
- Hiroshi Nakada
- Dept. of Gnatho-Oral Prosthetic Rehabilitation, Nihon University School of Dentistry at Matsudo, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A 2007; 82:445-54. [PMID: 17295252 DOI: 10.1002/jbm.a.31166] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly-L-lactic acid (PLLA)/hydroxyapatite (HA) hybrid membranes were fabricated via electrospinning of the PLLA/HA dispersion for use in bone tissue regeneration. The structural properties and morphologies of PLLA and PLLA/HA hybrid membrane were investigated by measuring the Brunauer-Emmett-Teller specific surface area, observations of SEM, and TEM. The dispersion and integrating of HA nanoparticles in the hybrid membrane were studied by energy dispersion X-ray analysis and FTIR. The mechanical properties of PLLA/HA membrane were also measured by tensile tests. For exploring biological behaviors of the hybrid membrane, in vitro degradation tests were carried out. The osteoblast cell (MG-63) was cultured in PLLA/HA hybrid membrane extract containing medium; the cell adhesion and growth capability were investigated by SEM observation and MTT assay. HA nanoparticles were not only dispersed in the PLLA but also reacted with the functional group of PLLA, resulting in strong surface bonding and high tensile strength of hybrid membrane. The cell adhesion and growth on the PLLA/HA hybrid membrane were far better than those on the pure PLLA membrane, which proves that the PLLA/HA hybrid membrane can be one of the promising biomaterials for bone tissue regeneration.
Collapse
Affiliation(s)
- Gang Sui
- The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Singh D, de la Cinta Lorenzo-Martin M, Gutiérrez-Mora F, Routbort JL, Case ED. Self-joining of zirconia/hydroxyapatite composites using plastic deformation process. Acta Biomater 2006; 2:669-75. [PMID: 16935578 DOI: 10.1016/j.actbio.2006.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 06/16/2006] [Accepted: 06/27/2006] [Indexed: 11/30/2022]
Abstract
A plastic deformation process was demonstrated to self-join 3 mol.% yttria partially stabilized zirconia (3Y-TZP)/hydroxyapatite (HA) composites. The 3Y-TZP/40 vol.% HA composites were fabricated by conventional ceramic processing by cold pressing premixed 3Y-TZP and HA powders into pellets. Densification ( approximately 90%) of composites was achieved by sintering composite powder compacts at 1450 degrees C for 5h. Optimum self-joining of 3Y-TZP/40 vol.% HA composites was obtained at 1300 degrees C for a strain rate of 5 x 10(-5)/s. The flow stress during joining was 40 MPa. Microstructural and mechanical characterizations of the joint interface demonstrated that there were no discernible differences between the joint and the composite material away from the interface.
Collapse
Affiliation(s)
- D Singh
- Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | | | | | |
Collapse
|
20
|
Ning CY, Wang YJ, Lu WW, Qiu QX, Lam RWM, Chen XF, Chiu KY, Ye JD, Wu G, Wu ZH, Chow SP. Nano-structural bioactive gradient coating fabricated by computer controlled plasma-spraying technology. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:875-84. [PMID: 16977384 DOI: 10.1007/s10856-006-0176-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/23/2005] [Indexed: 05/11/2023]
Abstract
The poor mechanical property of hydroxyapatite was the major problem for load bearing and implant coating in clinical applications. To overcome this weakness, a bioactive gradient coating with a special design composition of hydroxyapatite (HA), ZrO2, Ti, bioglass was developed. This 120 microm coating with an upper layer of 30-50 microm porous HA produced by computer controlled plasma spraying which maintained energy level of the plasma which ensure proper melting of powder. The crystal size of the coating was 18.6-26.2 nm. Transformation of t-ZrO2 to m-ZrO2 reduced the thermal stress that weakened the coating and lowered down interfacial strength of the coating and metal substrate. Thermal stress of sprayed coating was 16.4 MPa which was much smaller than the sample without thermal treatment of 67.1 MPa. Interfacial strength between the coating and metal substrate was 53 MPa which is much higher than conventional Hydroxyapatite coating. Based on XRD analysis crystallinity of HA approached 98%. Therefore, high temperature treatment improved long term stability of the coating through improved crystallinity of hydroxyapatite and reduced other impure calcium phosphate phase.
Collapse
Affiliation(s)
- C Y Ning
- Department of Orthopaedics & Traumatology, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nuss KMR, Auer JA, Boos A, Rechenberg BV. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones. BMC Musculoskelet Disord 2006; 7:67. [PMID: 16911787 PMCID: PMC1578562 DOI: 10.1186/1471-2474-7-67] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 08/15/2006] [Indexed: 11/23/2022] Open
Abstract
Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.
Collapse
Affiliation(s)
- Katja MR Nuss
- Musculoskeletal Research Unit (MSRU), Equine Hospital, Vetsuisse Faculty, Zurich, Switzerland
| | - Joerg A Auer
- Musculoskeletal Research Unit (MSRU), Equine Hospital, Vetsuisse Faculty, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Equine Hospital, Vetsuisse Faculty, Zurich, Switzerland
| |
Collapse
|