1
|
Bhattacharjee A, Bose S. Ginger extract loaded Fe2O3/MgO-doped hydroxyapatite: Evaluation of biological properties for bone-tissue engineering. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. AMERICAN CERAMIC SOCIETY 2024; 107:2081-2092. [PMID: 38855017 PMCID: PMC11160932 DOI: 10.1111/jace.19568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/17/2023] [Indexed: 06/11/2024]
Abstract
Since antiquity, the medicinal properties of naturally sourced biomolecules such as ginger (Zingiber officinale) extract are documented in the traditional Indian and Chinese medical systems. However, limited work is performed to assess the potential of ginger extracts for bone-tissue engineering. Our work demonstrates the direct incorporation of ginger extract on iron oxide-magnesium oxide (Fe2O3 and MgO) co-doped hydroxyapatite (HA) for enhancement in the biological properties. The addition of Fe2O3 and MgO co-doping system and ginger extract with HA increases the osteoblast viability up to ~ 1.4 times at day 11. The presence of ginger extract leads to up to ~ 9 times MG-63 cell viability reduction. The co-doping does not adversely affect the release of ginger extract from the graft surface in the biological medium at pH 7.4 for up to 28 days. Assessment of antibacterial efficacy according to the modified ISO 22196: 2011 standard method indicates that the combined effects of Fe2O3, MgO, and ginger extract lead to ~ 82 % more bacterial cell reduction, compared to the control HA against S. aureus. These ginger extract-loaded artificial bone grafts with enhanced biological properties may be utilized as a localized site-specific delivery vehicle for various bone tissue engineering applications.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
2
|
Mishra A, Kai R, Atkuru S, Dai Y, Piccinini F, Preshaw PM, Sriram G. Fluid flow-induced modulation of viability and osteodifferentiation of periodontal ligament stem cell spheroids-on-chip. Biomater Sci 2023; 11:7432-7444. [PMID: 37819086 DOI: 10.1039/d3bm01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Developing physiologically relevant in vitro models for studying periodontitis is crucial for understanding its pathogenesis and developing effective therapeutic strategies. In this study, we aimed to integrate the spheroid culture of periodontal ligament stem cells (PDLSCs) within a spheroid-on-chip microfluidic perfusion platform and to investigate the influence of interstitial fluid flow on morphogenesis, cellular viability, and osteogenic differentiation of PDLSC spheroids. PDLSC spheroids were seeded onto the spheroid-on-chip microfluidic device and cultured under static and flow conditions. Computational analysis demonstrated the translation of fluid flow rates of 1.2 μl min-1 (low-flow) and 7.2 μl min-1 (high-flow) to maximum fluid shear stress of 59 μPa and 360 μPa for low and high-flow conditions, respectively. The spheroid-on-chip microfluidic perfusion platform allowed for modulation of flow conditions leading to larger PDLSC spheroids with improved cellular viability under flow compared to static conditions. Modulation of fluid flow enhanced the osteodifferentiation potential of PDLSC spheroids, demonstrated by significantly enhanced alizarin red staining and alkaline phosphatase expression. Additionally, flow conditions, especially high-flow conditions, exhibited extensive calcium staining across both peripheral and central regions of the spheroids, in contrast to the predominantly peripheral staining observed under static conditions. These findings highlight the importance of fluid flow in shaping the morphological and functional properties of PDLSC spheroids. This work paves the way for future investigations exploring the interactions between PDLSC spheroids, microbial pathogens, and biomaterials within a controlled fluidic environment, offering insights for the development of innovative periodontal therapies, tissue engineering strategies, and regenerative approaches.
Collapse
Affiliation(s)
- Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Ren Kai
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| |
Collapse
|
3
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
4
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
5
|
Dong S, Zhang Y, Mei Y, Zhang Y, Hao Y, Liang B, Dong W, Zou R, Niu L. Researching progress on bio-reactive electrogenic materials with electrophysiological activity for enhanced bone regeneration. Front Bioeng Biotechnol 2022; 10:921284. [PMID: 35957647 PMCID: PMC9358035 DOI: 10.3389/fbioe.2022.921284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Bone tissues are dynamically reconstructed during the entire life cycle phase, which is an exquisitely regulated process controlled by intracellular and intercellular signals transmitted through physicochemical and biochemical stimulation. Recently, the role of electrical activity in promoting bone regeneration has attracted great attention, making the design, fabrication, and selection of bioelectric bio-reactive materials a focus. Under specific conditions, piezoelectric, photoelectric, magnetoelectric, acoustoelectric, and thermoelectric materials can generate bioelectric signals similar to those of natural tissues and stimulate osteogenesis-related signaling pathways to enhance the regeneration of bone defects, which can be used for designing novel smart biological materials for engineering tissue regeneration. However, literature summarizing studies relevant to bioelectric materials for bone regeneration is rare to our knowledge. Consequently, this review is mainly focused on the biological mechanism of electrical stimulation in the regeneration of bone defects, the current state and future prospects of piezoelectric materials, and other bioelectric active materials suitable for bone tissue engineering in recent studies, aiming to provide a theoretical basis for novel clinical treatment strategies for bone defects.
Collapse
Affiliation(s)
- Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
| | - Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Beilei Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Weijiang Dong
- School of Basic Sciences of Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi’an, China
- Department of Prosthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Yamada S, Yassin MA, Schwarz T, Mustafa K, Hansmann J. Optimization and Validation of a Custom-Designed Perfusion Bioreactor for Bone Tissue Engineering: Flow Assessment and Optimal Culture Environmental Conditions. Front Bioeng Biotechnol 2022; 10:811942. [PMID: 35402393 PMCID: PMC8990132 DOI: 10.3389/fbioe.2022.811942] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bioreactor systems are not always compatible with other systems. To reconcile results from different systems, the thorough optimization and validation of experimental configuration are required in each system. In this study, optimal experimental conditions for a perfusion bioreactor were explored in three steps. First, an in silico modeling was performed using a scaffold geometry obtained by microCT and an expedient geometry parameterized with porosity and permeability to assess the accuracy of calculated fluid shear stress and computational time. Then, environmental factors for cell culture were optimized, including the volume of the medium, bubble suppression, and medium evaporation. Further, by combining the findings, it was possible to determine the optimal flow rate at which cell growth was supported while osteogenic differentiation was triggered. Here, we demonstrated that fluid shear stress up to 15 mPa was sufficient to induce osteogenesis, but cell growth was severely impacted by the volume of perfused medium, the presence of air bubbles, and medium evaporation, all of which are common concerns in perfusion bioreactor systems. This study emphasizes the necessity of optimization of experimental variables, which may often be underreported or overlooked, and indicates steps which can be taken to address issues common to perfusion bioreactors for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| | - Mohammed A. Yassin
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Kamal Mustafa
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jan Hansmann
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Department Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| |
Collapse
|
7
|
Şahbazoğlu KB, Demirbilek M, Bayarı SH, Buber E, Toklucu S, Türk M, Karabulut E, Akalın FA. In vitro comparison of nanofibrillar and macroporous-spongious composite tissue scaffolds for periodontal tissue engineering. Connect Tissue Res 2022; 63:183-197. [PMID: 33899631 DOI: 10.1080/03008207.2021.1912029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM OF THE STUDY The ultimate goal of periodontal treatment is to regenerate the lost periodontal tissues. The interest in nanomaterials in dentistry is growing rapidly and has focused on improvements in various biomedical applications, such as periodontal regeneration and periodontal tissue engineering. To enhance periodontal tissue regeneration, hydroxyapatite (HA) was used in conjunction with other scaffold materials, such as Poly lactic-co-glycolic-acid (PLGA) and collagen (C). The main target of this study was to compare the effects of nano and macrostructures of the tissue scaffolds on cell behavior in vitro for periodontal tissue engineering. MATERIALS AND METHODS Nanofibrillar and macroporous-spongious composite tissue scaffolds were produced using PLGA/C/HA. Subgroups with BMP-2 signal molecule and without HA were also created. The scaffolds were characterized by FTIR, SEM/EDX techniques, and mechanical tests. The scaffolds were compared in the periodontal ligament (PDL) and MCT3-E1 cell cultures. The cell behaviors; adhesions by SEM, proliferation by WST-1, differentiation by ALP and mineralization with Alizarin Red Tests were determined. RESULTS Cell adhesion and mineralization were higher in the nanofibrillar scaffolds compared to the macroporous-spongious scaffolds. Macroporous-spongious scaffolds seemed better for the proliferation of PDL cells and differentiation of MC3T3-E1-preosteoblastic cells, while nanofibrillar scaffolds were more convenient for the differentiation of PDL cells and proliferation of MC3T3-E1-preosteoblastic cells. CONCLUSIONS In general, nanofibrillar scaffolds showed more favorable results in cell behaviors, compared to the macroporous-spongious scaffolds, and mostly, BMP-2 and HA promoted the activities of the cells.
Collapse
Affiliation(s)
| | - Murat Demirbilek
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey.,Biology Department, Ankara Hacı Bayram Veli University, Ankara, Turkey
| | - Sevgi Haman Bayarı
- Department of Physical Engineering, Hacettepe University, Ankara, Turkey
| | - Esra Buber
- Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Selçuk Toklucu
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Türk
- Department of Bioengineering, Kırıkkale University, Kırıkkale, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
8
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
9
|
Influence of Culture Period on Osteoblast Differentiation of Tissue-Engineered Bone Constructed by Apatite-Fiber Scaffolds Using Radial-Flow Bioreactor. Int J Mol Sci 2021; 22:ijms222313080. [PMID: 34884885 PMCID: PMC8657963 DOI: 10.3390/ijms222313080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/17/2023] Open
Abstract
With the limitation of autografts, the development of alternative treatments for bone diseases to alleviate autograft-related complications is highly demanded. In this study, a tissue-engineered bone was formed by culturing rat bone marrow cells (RBMCs) onto porous apatite-fiber scaffolds (AFSs) with three-dimensional (3D) interconnected pores using a radial-flow bioreactor (RFB). Using the optimized flow rate, the effect of different culturing periods on the development of tissue-engineered bone was investigated. The 3D cell culture using RFB was performed for 0, 1 or 2 weeks in a standard medium followed by 0, 1 or 2 weeks in a differentiation medium. Osteoblast differentiation in the tissue-engineered bone was examined by alkaline phosphatase (ALP) and osteocalcin (OC) assays. Furthermore, the tissue-engineered bone was histologically examined by hematoxylin and eosin and alizarin red S stains. We found that the ALP activity and OC content of calcified cells tended to increase with the culture period, and the differentiation of tissue-engineered bone could be controlled by varying the culture period. In addition, the employment of RFB and AFSs provided a favorable 3D environment for cell growth and differentiation. Overall, these results provide valuable insights into the design of tissue-engineered bone for clinical applications.
Collapse
|
10
|
Transcriptional activators YAP/TAZ and AXL orchestrate dedifferentiation, cell fate, and metastasis in human osteosarcoma. Cancer Gene Ther 2021; 28:1325-1338. [PMID: 33408328 PMCID: PMC8636268 DOI: 10.1038/s41417-020-00281-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a molecularly heterogeneous, aggressive, poorly differentiated pediatric bone cancer that frequently spreads to the lung. Relatively little is known about phenotypic and epigenetic changes that promote lung metastases. To identify key drivers of metastasis, we studied human CCH-OS-D OS cells within a previously described rat acellular lung (ACL) model that preserves the native lung architecture, extracellular matrix, and capillary network. This system identified a subset of cells—termed derived circulating tumor cells (dCTCs)—that can migrate, intravasate, and spread within a bioreactor-perfused capillary network. Remarkably, dCTCs highly expressed epithelial-to-mesenchymal transition (EMT)-associated transcription factors (EMT-TFs), such as ZEB1, TWIST, and SOX9, which suggests that they undergo cellular reprogramming toward a less differentiated state by coopting the same epigenetic machinery used by carcinomas. Since YAP/TAZ and AXL tightly regulate the fate and plasticity of normal mesenchymal cells in response to microenvironmental cues, we explored whether these proteins contributed to OS metastatic potential using an isogenic pair of human OS cell lines that differ in AXL expression. We show that AXL inhibition significantly reduced the number of MG63.2 pulmonary metastases in murine models. Collectively, we present a laboratory-based method to detect and characterize a pure population of dCTCs, which provides a unique opportunity to study how OS cell fate and differentiation contributes to metastatic potential. Though the important step of clinical validation remains, our identification of AXL, ZEB1, and TWIST upregulation raises the tantalizing prospect that EMT-TF-directed therapies might expand the arsenal of therapies used to combat advanced-stage OS.
Collapse
|
11
|
Park JH, Gillispie GJ, Copus JS, Zhang W, Atala A, Yoo JJ, Yelick PC, Lee SJ. The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication 2020; 12:035029. [PMID: 32428889 PMCID: PMC7641314 DOI: 10.1088/1758-5090/ab9492] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to use 3D bioprinting technology to create a bioengineered dental construct containing human dental pulp stem cells (hDPSCs). To accomplish this, we first developed a novel bone morphogenetic protein (BMP) peptide-tethering bioink formulation and examined its rheological properties, its printability, and the structural stability of the bioprinted construct. Second, we evaluated the survival and differentiation of hDPSCs in the bioprinted dental construct by measuring cell viability, proliferation, and gene expression, as well as histological and immunofluorescent analyses. Our results showed that the peptide conjugation into the gelatin methacrylate-based bioink formulation was successfully performed. We determined that greater than 50% of the peptides remained in the bioprinted construct after three weeks in vitro cell culture. Human DPSC viability was >90% in the bioprinted constructs immediately after the printing process. Alizarin Red staining showed that the BMP peptide construct group exhibited the highest calcification as compared to the growth medium, osteogenic medium, and non-BMP peptide construct groups. In addition, immunofluorescent and quantitative reverse transcription-polymerase chain reaction analyses showed robust expression of dentin sialophosphoprotein and osteocalcin in the BMP peptide dental constructs. Together, these results strongly suggested that BMP peptide-tethering bioink could accelerate the differentiation of hDPSCs in 3D bioprinted dental constructs.
Collapse
Affiliation(s)
- Ji Hoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Gregory J. Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Joshua S. Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Weibo Zhang
- Department of Orthodontics, Tufts University, Boston MA 02111
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | | | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
12
|
Pearce HA, Kim YS, Diaz-Gomez L, Mikos AG. Tissue Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Abstract
Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and scaffold design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to different processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation offers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.
Collapse
|
14
|
Zhang M, Shi X, Wu J, Wang Y, Lin J, Zhao Y, Li H, Ren M, Hu R, Liu F, Deng H. CoCl 2 induced hypoxia enhances osteogenesis of rat bone marrow mesenchymal stem cells through cannabinoid receptor 2. Arch Oral Biol 2019; 108:104525. [PMID: 31472278 DOI: 10.1016/j.archoralbio.2019.104525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aims to investigate the role of Cannabinoid receptor 2 (CB2) on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) under hypoxia. MATERIALS AND METHODS BMSCs were isolated from Sprague-Dawley rats and cultured in the presence of cobalt chloride (CoCl2) to induce intracellular hypoxia. Cell proliferation was measured with MTT assay. Quantitative real-time PCR and western blot were applied to evaluate the mRNA and protein expressions of CB2 and osteogenic indicators including osteocalcin, RUNX2, collagen-1 and osterix (SP7). The osteogenic differentiation of BMSCs was further examined by ALP assay and alizarin red S (ARS) staining. Moreover, the activation of MAPKs signaling pathways was analyzed by western blot. RESULTS CoCl2 dose-dependently increased hypoxia inducible factor while higher concentrations (200 and 400 μM) of CoCl2 markedly inhibited cell proliferation. CoCl2 induced hypoxia significantly increased the protein and mRNA expressions of osteocalcin, RUNX2, collagen-1 and osterix, along with enhanced ALP and ARS staining. Interestingly, such effects can be inhibited by the addition of CB2 inhibitor AM630. Moreover, AM630 partially inhibited hypoxia-induced p38 and ERK pathways, which may lead to a decrease in the osteogenic transcripts of RUNX2, collagen-1 and osterix. CONCLUSIONS CoCl2 induced hypoxia could promote osteogenesis of rat BMSCs possibly through CB2.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlian Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxiang Wu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Lin
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya Zhao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Li
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manman Ren
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Deng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Yaghoobi M, Hashemi-Najafabadi S, Soleimani M, Vasheghani-Farahani E. Osteogenic induction of human mesenchymal stem cells in multilayered electrospun scaffolds at different flow rates and configurations in a perfusion bioreactor. J Biosci Bioeng 2019; 128:495-503. [PMID: 31085079 DOI: 10.1016/j.jbiosc.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
Abstract
Electrospun scaffolds are potentially interesting in bone tissue engineering due to a strong structural similarity to the natural bone matrix. To investigate the osteogenic behavior of cells on the scaffolds, dynamic culture of cells is essential to simulate the biological environment. In the present study, human mesenchymal stem cells (hMSCs) were cultured on multilayer nanohydroxyapatite-polycaprolactone electrospun scaffolds at different configurations (horizontal with or without pressure and parallel with the medium flow) and flow rates in a perfusion bioreactor. Alkaline phosphatase (ALP) activity, cell viability, Ca deposition and RUNX2 expression were determined in three different dynamic states, and compared with static culture after 1, 3, 7, and 14 days. Among dynamic groups, RUNX2 gene expression upregulated more in a horizontal state at a low flow rate without mechanical pressure (LF) and parallel flow (PF), than static group on day 7. At a high flow rate with mechanical pressure, Ca deposition and ALP activity increased 2.34 and 1.7 folds more than in static culture over 7 days, respectively. Furthermore, ALP activity, Ca deposition and RUNX2 gene expression increased in PF samples. PF provided longer culture time with higher cell differentiation. Therefore, high flow rate with mechanical pressure and PF are suggested for producing differentiated cell structure for bone tissue engineering.
Collapse
Affiliation(s)
- Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran; Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115- 331, Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| |
Collapse
|
16
|
Babaliari E, Petekidis G, Chatzinikolaidou M. A Precisely Flow-Controlled Microfluidic System for Enhanced Pre-Osteoblastic Cell Response for Bone Tissue Engineering. Bioengineering (Basel) 2018; 5:bioengineering5030066. [PMID: 30103544 PMCID: PMC6164058 DOI: 10.3390/bioengineering5030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022] Open
Abstract
Bone tissue engineering provides advanced solutions to overcome the limitations of currently used therapies for bone reconstruction. Dynamic culturing of cell-biomaterial constructs positively affects the cell proliferation and differentiation. In this study, we present a precisely flow-controlled microfluidic system employed for the investigation of bone-forming cell responses cultured on fibrous collagen matrices by applying two flow rates, 30 and 50 μL/min. We characterized the collagen substrates morphologically by means of scanning electron microscopy, investigated their viscoelastic properties, and evaluated the orientation, proliferation and osteogenic differentiation capacity of pre-osteoblastic cells cultured on them. The cells are oriented along the direction of the flow at both rates, in contrast to a random orientation observed under static culture conditions. The proliferation of cells after 7 days in culture was increased at both flow rates, with the flow rate of 50 μL/min indicating a significant increase compared to the static culture. The alkaline phosphatase activity after 7 days increased at both flow rates, with the rate of 30 μL/min indicating a significant enhancement compared to static conditions. Our results demonstrate that precisely flow-controlled microfluidic cell culture provides tunable control of the cell microenvironment that directs cellular activities involved in bone regeneration.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| | - George Petekidis
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Crete 70013, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Crete 70013, Greece.
| |
Collapse
|
17
|
Amer MH, Rose FRAJ, Shakesheff KM, White LJ. A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Res Ther 2018; 9:39. [PMID: 29467014 PMCID: PMC5822649 DOI: 10.1186/s13287-018-0789-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation. Electronic supplementary material The online version of this article (10.1186/s13287-018-0789-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahetab H Amer
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Felicity R A J Rose
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kevin M Shakesheff
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lisa J White
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Ding LZ, Teng X, Zhang ZB, Zheng CJ, Chen SH. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells. Int J Mol Med 2018; 41:2517-2526. [PMID: 29484386 PMCID: PMC5846652 DOI: 10.3892/ijmm.2018.3506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/17/2018] [Indexed: 01/01/2023] Open
Abstract
Mangiferin is a xanthone glucoside, which possesses antioxidant, antiviral, antitumor and anti-inflammatory functions, and is associated with gene regulation. However, it remains unknown whether mangiferin protects osteoblasts, such as the MC3T3-E1 cell line, against glucocorticoid-induced damage. In the present study, MC3T3-E1 cells were treated with dexamethasone (Dex), which is a well-known synthetic glucocorticoid, in order to establish a glucocorticoid-induced cell injury model. After Dex and/or mangiferin treatment, cell viability, apoptosis and reactive oxygen species (ROS) production was measured by Cell Counting kit-8 (CCK-8) and flow cytometry, respectively, and the concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and macrophage colony-stimulating factor (M-CSF) was measured by ELISA. The expression of bone morphogenetic protein 2 (BMP2), phosphorylated-SMAD family member 1 (p-Smad-1), t-Smad-1, osterix (OSX), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) was measured by real-time PCR and/or western blot analysis. The results indicated that pretreatment of MC3T3-E1 cells with mangiferin for 3 h prior to exposure to Dex for 48 h significantly attenuated Dex-induced injury and inflammation, as demonstrated by increased cell viability, and decreases in apoptosis, ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In addition, pretreatment with mangiferin markedly reduced Dex-induced BMP2 and p-Smad-1 downregulation, and corrected the expression of differentiation- and apoptosis-associated markers, including alkaline phosphatase, OSX, OCN, OPG, RANK, RANKL, Bcl-2 and Bax, which were altered by Dex treatment. Similar to the protective effects of mangiferin, overexpression of BMP2 suppressed not only Dex-induced cytotoxicity, but also ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In conclusion, the results of the present study are the first, to the best of our knowledge, to demonstrate that mangiferin protects MC3T3-E1 cells against Dex-induced apoptosis and oxidative stress by activating the BMP2/Smad-1 signaling pathway.
Collapse
Affiliation(s)
- Ling-Zhi Ding
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Xiao Teng
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Zhao-Bo Zhang
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Chang-Jun Zheng
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Shi-Hong Chen
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
19
|
Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment. Int J Mol Sci 2018; 19:ijms19020360. [PMID: 29370110 PMCID: PMC5855582 DOI: 10.3390/ijms19020360] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a progressive skeletal disease characterized by decreased bone mass and degraded bone microstructure, which leads to increased bone fragility and risks of bone fracture. Osteoporosis is generally age related and has become a major disease of the world. Uncovering the molecular mechanisms underlying osteoporosis and developing effective prevention and therapy methods has great significance for human health. Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts, adipocytes, or chondrocytes, and have become the favorite source of cell-based therapy. Evidence shows that during osteoporosis, a shift of the cell differentiation of MSCs to adipocytes rather than osteoblasts partly contributes to osteoporosis. Thus, uncovering the molecular mechanisms of the osteoblast or adipocyte differentiation of MSCs will provide more understanding of MSCs and perhaps new methods of osteoporosis treatment. The MSCs have been applied to both preclinical and clinical studies in osteoporosis treatment. Here, we review the recent advances in understanding the molecular mechanisms regulating osteoblast differentiation and adipocyte differentiation of MSCs and highlight the therapeutic application studies of MSCs in osteoporosis treatment. This will provide researchers with new insights into the development and treatment of osteoporosis.
Collapse
|
20
|
Davari SA, Masjedi S, Ferdous Z, Mukherjee D. In-vitro analysis of early calcification in aortic valvular interstitial cells using Laser-Induced Breakdown Spectroscopy (LIBS). JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28488393 DOI: 10.1002/jbio.201600288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 05/17/2023]
Abstract
Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in-vitro VIC cultures. Laser-induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in-vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ∼0.17±0.04 μg which indicates a 5-fold improvement over calcium assay. Picture: Quantitative LIBS enables in-vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs).
Collapse
Affiliation(s)
- Seyyed Ali Davari
- Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shirin Masjedi
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zannatul Ferdous
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dibyendu Mukherjee
- Nano-BioMaterials Laboratory for Energy Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
21
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
22
|
Mitra D, Whitehead J, Yasui OW, Leach JK. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials 2017; 146:29-39. [PMID: 28898756 PMCID: PMC5618709 DOI: 10.1016/j.biomaterials.2017.08.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation.
Collapse
Affiliation(s)
- Debika Mitra
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Osamu W Yasui
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
23
|
Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach. PLoS One 2017; 12:e0180781. [PMID: 28686698 PMCID: PMC5501602 DOI: 10.1371/journal.pone.0180781] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022] Open
Abstract
Mechanical loading plays a major role in bone remodeling and fracture healing. Mimicking the concept of mechanical loading of bone has been widely studied in bone tissue engineering by perfusion cultures. Nevertheless, there is still debate regarding the in-vitro mechanical stimulation regime. This study aims at investigating the effect of two different flow rates (vlow = 0.001m/s and vhigh = 0.061m/s) on the growth of mineralized tissue produced by human mesenchymal stromal cells cultured on 3-D silk fibroin scaffolds. The flow rates applied were chosen to mimic the mechanical environment during early fracture healing or during bone remodeling, respectively. Scaffolds cultured under static conditions served as a control. Time-lapsed micro-computed tomography showed that mineralized extracellular matrix formation was completely inhibited at vlow compared to vhigh and the static group. Biochemical assays and histology confirmed these results and showed enhanced osteogenic differentiation at vhigh whereas the amount of DNA was increased at vlow. The biological response at vlow might correspond to the early stage of fracture healing, where cell proliferation and matrix production is prominent. Visual mapping of shear stresses, simulated by computational fluid dynamics, to 3-D micro-computed tomography data revealed that shear stresses up to 0.39mPa induced a higher DNA amount and shear stresses between 0.55mPa and 24mPa induced osteogenic differentiation. This study demonstrates the feasibility to drive cell behavior of human mesenchymal stromal cells by the flow velocity applied in agreement with mechanical loading mimicking early fracture healing (vlow) or bone remodeling (vhigh). These results can be used in the future to tightly control the behavior of human mesenchymal stromal cells towards proliferation or differentiation. Additionally, the combination of experiment and simulation presented is a strong tool to link biological responses to mechanical stimulation and can be applied to various in-vitro cultures to improve the understanding of the cause-effect relationship of mechanical loading.
Collapse
|
24
|
Hendrikson WJ, van Blitterswijk CA, Rouwkema J, Moroni L. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Front Bioeng Biotechnol 2017; 5:30. [PMID: 28567371 PMCID: PMC5434139 DOI: 10.3389/fbioe.2017.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Wim. J. Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens. A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
25
|
Zaky SH, Lee KW, Gao J, Jensen A, Verdelis K, Wang Y, Almarza AJ, Sfeir C. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomater 2017; 54:95-106. [PMID: 28110067 DOI: 10.1016/j.actbio.2017.01.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/28/2022]
Abstract
Mechanical load influences bone structure and mass. Arguing the importance of load-transduction, we investigated the mechanisms inducing bone formation using an elastomeric substrate. We characterized Poly (glycerol sebacate) (PGS) in vitro for its mechanical properties, compatibility with osteoprogenitor cells regarding adhesion, proliferation, differentiation under compression versus static cultures and in vivo for the regeneration of a rabbit ulna critical size defect. The load-transducing properties of PGS were compared in vitro to a stiffer poly lactic-co-glycolic-acid (PLA/PGA) scaffold of similar porosity and interconnectivity. Under cyclic compression for 7days, we report focal adhesion kinase overexpression on the less stiff PGS and upregulation of the transcription factor Runx2 and late osteogenic markers osteocalcin and bone sialoprotein (1.7, 4.0 and 10.0 folds increase respectively). Upon implanting PGS in the rabbit ulna defect, histology and micro-computed tomography analysis showed complete gap bridging with new bone by the PGS elastomer by 8weeks while minimal bone formation was seen in empty controls. Immunohistochemical analysis demonstrated the new bone to be primarily regenerated by recruited osteoprogenitors cells expressing periostin protein during early phase of maturation similar to physiological endochondral bone development. This study confirms PGS to be osteoconductive contributing to bone regeneration by recruiting host progenitor/stem cell populations and as a load-transducing substrate, transmits mechanical signals to the populated cells promoting differentiation and matrix maturation toward proper bone remodeling. We hence conclude that the material properties of PGS being closer to osteoid tissue rather than to mineralized bone, allows bone maturation on a substrate mechanically closer to where osteoprogenitor/stem cells differentiate to develop mature load-bearing bone. SIGNIFICANCE OF SIGNIFICANCE The development of effective therapies for bone and craniofacial regeneration is a foremost clinical priority in the mineralized tissue engineering field. Currently at risk are patients seeking treatment for craniofacial diseases, traumas and disorders including birth defects such as cleft lip and palate, (1 in 525 to 714 live births), craniosynostosis (300-500 per 1,000,000 live births), injuries to the head and face (20 million ER visits per year), and devastating head and neck cancers (8000 deaths and over 30,000 new cases per year). In addition, approximately 6.2 million fractures occur annually in the United States, of which 5-10% fail to heal properly, due to delayed or non-union [1], and nearly half of adults aged 45-65 have moderate to advanced periodontitis with associated alveolar bone loss, which, if not reversed, will lead to the loss of approximately 6.5 teeth/individual [2]. The strategies currently available for bone loss treatment largely suffer from limitations in efficacy or feasibility, necessitating further development and material innovation. Contemporary materials systems themselves are indeed limited in their ability to facilitate mechanical stimuli and provide an appropriate microenvironment for the cells they are designed to support. We propose a strategy which aims to leverage biocompatibility, biodegradability and material elasticity in the creation of a cellular niche. Within this niche, cells are mechanically stimulated to produce their own extracellular matrix. The hypothesis that mechanical stimuli will enhance bone regeneration is supported by a wealth of literature showing the effect of mechanical stimuli on bone cell differentiation and matrix formation. Using mechanical stimuli, to our knowledge, has not been explored in vivo in bone tissue engineering applications. We thus propose to use an elastomeric platform, based on poly(glycerol sebacate (PGS), to mimic the natural biochemical environment of bone while enabling the transmission of mechanical forces. In this study we report the material's load-transducing ability as well as falling mechanically closer to bone marrow and osteoid tissue rather than to mature bone, allowed osteogenesis and bone maturation. Defying the notion of selecting bone regeneration scaffolds based on their relative mechanical comparability to mature bone, we consider our results in part novel for the new application of this elastomer and in another fostering for reassessment of the current selection criteria for bone scaffolds.
Collapse
Affiliation(s)
- S H Zaky
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh, USA
| | - K W Lee
- Department of Bioengineering, University of Pittsburgh, USA
| | - J Gao
- Department of Bioengineering, University of Pittsburgh, USA
| | - A Jensen
- Department of Chemistry, University of Pittsburgh Dietrich School of Arts and Sciences, USA
| | - K Verdelis
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| | - Y Wang
- Department of Bioengineering, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| | - A J Almarza
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| | - C Sfeir
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA.
| |
Collapse
|
26
|
Kanda Y, Nishimura I, Sato T, Katayama A, Arano T, Ikada Y, Yoshinari M. Dynamic cultivation with radial flow bioreactor enhances proliferation or differentiation of rat bone marrow cells by fibroblast growth factor or osteogenic differentiation factor. Regen Ther 2016; 5:17-24. [PMID: 31245496 PMCID: PMC6581843 DOI: 10.1016/j.reth.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 11/30/2022] Open
Abstract
Dynamic cultivation using a radial flow bioreactor (RFB) has gained increasing interest as a method of achieving bone regeneration. In order to enhance bone generation in large bone defects, it is necessary to use an RFB to expand the primary cells such as bone marrow cells derived from biotissue. The present study aimed to evaluate the cell expansion and osteogenic differentiation of rat bone marrow cells (rBMC) when added to basic fibroblast growth factor containing medium (bFGFM) or osteogenic differentiation factor containing medium (ODM) under dynamic cultivation using an RFB. Cell proliferation was evaluated with a DNA-based cell count method and histological analysis. An alkaline phosphatase (ALP) activity assay and immunohistochemistry staining of osteogenic markers including BMP-2 and osteopontin were used to assess osteogenic differentiation ability. After culture for one week, rBMC cell numbers increased significantly under dynamic cultivation compared with that under static cultivation in all culture media. For different culture media in dynamic cultivation, bFGFM had the highest increase in cell numbers. ALP activity was facilitated by dynamic cultivation with ODM. Furthermore, both BMP-2 and osteopontin were detected in the dynamic cultivation with ODM. These results suggested that bFGFM promotes cell proliferation and ODM promotes osteogenic differentiation of rBMC under dynamic cultivation using an RFB.
Collapse
Affiliation(s)
- Yuuhei Kanda
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Itsurou Nishimura
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toru Sato
- Department of Fixed Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Aiko Katayama
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Taichi Arano
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yoshito Ikada
- Division of Life Science, Nara Medical University, Kashihara, Japan
| | - Masao Yoshinari
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
27
|
Kavanaugh TE, Clark AY, Chan-Chan LH, Ramírez-Saldaña M, Vargas-Coronado RF, Cervantes-Uc JM, Hernández-Sánchez F, García AJ, Cauich-Rodríguez JV. Human mesenchymal stem cell behavior on segmented polyurethanes prepared with biologically active chain extenders. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:38. [PMID: 26704555 PMCID: PMC4912831 DOI: 10.1007/s10856-015-5654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, SPUs were synthesized from poly (ε-caprolactone)diol, 4,4'-methylene bis(cyclohexyl isocyanate) using biologically active compounds such as ascorbic acid, L-glutamine, β-glycerol phosphate, and dexamethasone as chain extenders. Fourier transform infrared spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while differential scanning calorimetry, dynamic mechanical analysis, X-ray diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing β-glycerol phosphate supported human mesenchymal stem cell adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications.
Collapse
Affiliation(s)
- Taylor E Kavanaugh
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Lerma H Chan-Chan
- CONACYT - Departamento de Física, Universidad de Sonora, Luis Encinas y Rosales, 83000, Hermosillo, Sonora, Mexico
| | - Maricela Ramírez-Saldaña
- CONACYT - Departamento de Física, Universidad de Sonora, Luis Encinas y Rosales, 83000, Hermosillo, Sonora, Mexico
| | - Rossana F Vargas-Coronado
- Centro de Investigación Científica de Yucatán A.C., Calle 43 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico
| | - José M Cervantes-Uc
- Centro de Investigación Científica de Yucatán A.C., Calle 43 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico
| | - Fernando Hernández-Sánchez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Juan V Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán A.C., Calle 43 130, Col. Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico.
| |
Collapse
|
28
|
An S, Gao Y, Ling J. Characterization of human periodontal ligament cells cultured on three-dimensional biphasic calcium phosphate scaffolds in the presence and absence of L-ascorbic acid, dexamethasone and β-glycerophosphate in vitro. Exp Ther Med 2015; 10:1387-1393. [PMID: 26622495 PMCID: PMC4578067 DOI: 10.3892/etm.2015.2706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/03/2015] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to evaluate the effect of porous biphasic calcium phosphate (BCP) scaffolds on the proliferation and osteoblastic differentiation of human periodontal ligament cells (hPDLCs) in the presence and absence of osteogenic inducer (L-ascorbic acid, dexamethasone and β-glycerophosphate). The cell growth within the scaffolds in the absence of osteogenic inducers was studied by cell counting kit-8 (CCK-8) assay and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and osteoblastic differentiation markers of hPDLCs in BCP scaffolds were examined in the presence and absence of osteogenic inducers. The cell number of hPDLCs in the BCP scaffolds was less than that of hPDLCs cultured in microplates (control). SEM images showed that cells successfully adhered to the BCP scaffolds and spread amongst the pores; they also produced abundant extracellular cell matrix. In the presence and absence of osteogenic inducers, the ALP activity of hPDLCs within BCP scaffolds was suppressed in varying degrees at all time-points. In the absence of osteogenic inducers, hPDLCs in BCP scaffolds express significant higher levels of osteopontin (OPN) mRNA than the control, and there were no significant differences for Runx2 and osteocalcin (OCN) mRNA levels compared with those cultured in microplates. In the presence of osteogenic inducers, Runx2 expression levels were significantly higher than those in control. OPN and OCN mRNA levels were downregulated slightly. Three-dimensional porous BCP scaffolds are able to stimulate the osteoblastic differentiation of hPDLCs in the presence and absence of osteogenic inducer and may be capable of supporting hPDLC-mediated bone formation.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
29
|
Egger D, Krammer M, Hansmann J, Walles H, Kasper C. Dynamic cultivation of human stem cells under physiological conditions. BMC Proc 2015. [PMCID: PMC4685432 DOI: 10.1186/1753-6561-9-s9-p68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate. Acta Biomater 2015; 20:1-9. [PMID: 25871537 DOI: 10.1016/j.actbio.2015.04.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023]
Abstract
Bone marrow-derived mesenchymal stem and stromal cells (MSCs) are promising candidates for cell-based therapies in diverse conditions including tissue engineering. Advancement of these therapies relies on the ability to direct MSCs toward specific cell phenotypes. Despite identification of applied forces that affect self-maintenance, proliferation, and differentiation of MSCs, mechanisms underlying the integration of mechanically induced signaling cascades and interpretation of mechanical signals by MSCs remain elusive. During the past decade, many researchers have demonstrated that external applied forces can activate osteogenic signaling pathways in MSCs, including Wnt, Ror2, and Runx2. Besides, recent advances have highlighted the critical role of internal forces due to cell-matrix interaction in MSC function. These internal forces can be achieved by the materials that cells reside in through its mechanical properties, such as rigidity, topography, degradability, and substrate patterning. MSCs can generate contractile forces to sense these mechanical properties and thereby perceive mechanical information that directs broad aspects of MSC functions, including lineage commitment. Although many signaling pathways have been elucidated in material-induced lineage specification of MSCs, discovering the mechanisms by which MSCs respond to such cell-generated forces is still challenging because of the highly intricate signaling milieu present in MSC environment. However, bioengineers are bridging this gap by developing platforms to control mechanical cues with improved throughput and precision, thereby enabling further investigation of mechanically induced MSC functions. In this review, we discuss the most recent advances that how applied forces and cell-generated forces may be engineered to determine MSC fate, and overview a subset of the operative signal transduction mechanisms and experimental platforms that have emerged in MSC mechanobiology research. Our main goal is to provide an up-to-date view of MSC mechanobiology that is relevant to both mechanical loading and mechanical properties of the environment, and introduce these emerging platforms for tissue engineering use.
Collapse
|
31
|
Cruel M, Bensidhoum M, Nouguier-Lehon C, Dessombz O, Becquart P, Petite H, Hoc T. Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering. Tissue Eng Part C Methods 2015; 21:863-71. [PMID: 25634115 DOI: 10.1089/ten.tec.2014.0648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Controlling the mechanical environment in bioreactors represents a key element in the reactors' optimization. Positive effects of fluid flow in three-dimensional bioreactors have been observed, but local stresses at cell scale remain unknown. These effects led to the development of numerical tools to assess the micromechanical environment of cells in bioreactors. Recently, new possible scaffold geometry has emerged: granular packings. In the present study, the primary goal was to compare the efficiency of such a scaffold to the other ones from literature in terms of wall shear stress levels and distributions. To that aim, three different types of granular packings were generated through discrete element method, and computational fluid dynamics was used to simulate the flow within these packings. Shear stress levels and distributions were determined. A linear relationship between shear stress and inlet velocity was observed, and its slope was similar to published data. The distributions of normalized stress were independent of the inlet velocity and were highly comparable to those of widely used porous scaffolds. Granular packings present similar features to more classical porous scaffolds and have the advantage of being easy to manipulate and seed. The methods of this work are generalizable to the study of other granular packing configurations.
Collapse
Affiliation(s)
- Magali Cruel
- 1 Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, UMR CNRS 5513) , Ecole Centrale de Lyon, Ecully Cedex, France
| | - Morad Bensidhoum
- 2 Laboratory of Bioengineering and Biomechanics for Bone and Articulations (B2OA, UMR CNRS 7052), University of Paris 7 , PRES Paris Cité, Paris, France
| | - Cécile Nouguier-Lehon
- 1 Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, UMR CNRS 5513) , Ecole Centrale de Lyon, Ecully Cedex, France
| | - Olivier Dessombz
- 1 Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, UMR CNRS 5513) , Ecole Centrale de Lyon, Ecully Cedex, France
| | - Pierre Becquart
- 2 Laboratory of Bioengineering and Biomechanics for Bone and Articulations (B2OA, UMR CNRS 7052), University of Paris 7 , PRES Paris Cité, Paris, France
| | - Hervé Petite
- 2 Laboratory of Bioengineering and Biomechanics for Bone and Articulations (B2OA, UMR CNRS 7052), University of Paris 7 , PRES Paris Cité, Paris, France
| | - Thierry Hoc
- 1 Laboratoire de Tribologie et Dynamique des Systèmes (LTDS, UMR CNRS 5513) , Ecole Centrale de Lyon, Ecully Cedex, France
| |
Collapse
|
32
|
Della Porta G, Nguyen BNB, Campardelli R, Reverchon E, Fisher JP. Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2014; 103:2161-71. [PMID: 25346530 DOI: 10.1002/jbm.a.35354] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 10/10/2014] [Indexed: 01/29/2023]
Abstract
Microparticles have been utilized as delivery vehicles of soluble factors to modify cellular behavior and therefore enhance tissue engineering regeneration. When incorporated into three-dimensional systems, microparticles can provide geometrical and temporal controlled release of bioactive agents, such as growth factors (GFs) to surrounding cells. This study investigates the effect of GFs release from biopolymer microparticles on osteoblastic differentiation of human mesenchymal stem cells (hMSCs) encapsulated in calcium (Ca)-alginate scaffolds while cultured in a tubular perfusion system bioreactor system. Empirical and deterministic models were used to demonstrate that poly(D,L-lactic-co-glycolic acid)-encapsulated GFs would result in a delayed release profile compared to GFs encapsulated into scaffolds directly. We hypothesized that the dual delivery of human bone-morphogenetic protein 2 (hBMP2) and human vascular endothelial growth factor to cells in dynamic culture would provide molecular and physical cues to promote differentiation. Results indicated that the exposures of hBMP2 and dynamic flow are sufficient in enhancing the osteoblastic differentiation pathway compared to no GF addition and static culture. The GF delivery system in a dynamic flow environment resulted in a synergistic effect on osteoblastic differentiation of hMSCs.
Collapse
Affiliation(s)
- Giovanna Della Porta
- Department of Industrial Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Laboratory of Cellular and Molecular Engineering (DEI), University of Bologna, 47521, Cesena (FC), Italy
| | | | | | | | | |
Collapse
|
33
|
McCoy RJ, Widaa A, Watters KM, Wuerstle M, Stallings RL, Duffy GP, O'Brien FJ. Orchestrating osteogenic differentiation of mesenchymal stem cells--identification of placental growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells 2014; 31:2420-31. [PMID: 23897668 DOI: 10.1002/stem.1482] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 01/09/2023]
Abstract
Skeletogenesis is initiated during fetal development and persists through adult life as either a remodeling process in response to homeostatic regulation or as a regenerative process in response to physical injury. Mesenchymal stem cells (MSCs) play a crucial role providing progenitor cells from which osteoblasts, bone matrix forming cells are differentiated. The mechanical environment plays an important role in regulating stem cell differentiation into osteoblasts, however, the mechanisms by which MSCs respond to mechanical stimuli are yet to be fully elucidated. To increase understanding of MSC mechanotransuction and osteogenic differentiation, this study aimed to identify novel, mechanically augmented genes and pathways with pro-osteogenic functionality. Using collagen glycoaminoglycan scaffolds as mimics of native extracellular matrix, to create a 3D environment more representative of that found in bone, MSC-seeded constructs were mechanically stimulated in a flow-perfusion bioreactor. Global gene expression profiling techniques were used to identify potential candidates warranting further investigation. Of these, placental growth factor (PGF) was selected and expression levels were shown to strongly correlate to both the magnitude and duration of mechanical stimulation. We demonstrated that PGF gene expression was modulated through an actin polymerization-mediated mechanism. The functional role of PGF in modulating MSC osteogenic differentiation was interrogated, and we showed a concentration-dependent response whereby low concentrations exhibited the strongest pro-osteogenic effect. Furthermore, pre-osteoclast migration and differentiation, as well as endothelial cell tubule formation also maintained concentration-dependent responses to PGF, suggesting a potential role for PGF in bone resorption and angiogenesis, processes key to bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Ryan J McCoy
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | | | | | | | | | | | |
Collapse
|
34
|
Du D, Asaoka T, Ushida T, Furukawa KS. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 2014; 6:045002. [DOI: 10.1088/1758-5082/6/4/045002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Liao S, Nguyen LTH, Ngiam M, Wang C, Cheng Z, Chan CK, Ramakrishna S. Biomimetic nanocomposites to control osteogenic differentiation of human mesenchymal stem cells. Adv Healthc Mater 2014; 3:737-51. [PMID: 24574245 DOI: 10.1002/adhm.201300207] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The design of biomimetic nanomaterials that can directly influence the behavior of cells and facilitate the regeneration of tissues and organs has become an active area of research. Here, the production of materials based on nano-hydroxyapatite composites in scaffolds with nanofibrous and nanoporous topographies, designed to mimic the native bone matrix for applications in bone tissue engineering, is reported. Human mesenchymal stem cells grown on these nanocomposites are stimulated to rapidly produce bone minerals in situ, even in the absence of osteogenic supplements in the cell-culture medium. Nanocomposites comprising type I collagen and nano-hydroxyapatite are found to be especially efficient at inducing mineralization. When subcutaneously implanted into nude mice, this biomimetic nanocomposite is able to form a new bone matrix within only two weeks. Furthermore, when the nanocomposite is enriched with human mesenchymal stem cells before implantation, development of the bone matrix is accelerated to within one week. To the best of the authors' knowledge, this study provides the first clear in vitro and in vivo demonstration of osteoinduction controlled by the material characteristics of a biomimetic nanocomposite. This approach can potentially facilitate the translation of de novo bone-formation technologies to the clinic.
Collapse
Affiliation(s)
- Susan Liao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798
| | - Luong T. H. Nguyen
- Department of Mechanical Engineering National University of Singapore Singapore 117575
| | - Michelle Ngiam
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore Singapore 117456
| | - Charlene Wang
- Nanoscience and Nanotechnology Institute National University of Singapore Singapore 117581
| | - Ziyuan Cheng
- Department of Biomedical Engineering National University of Singapore Singapore 117576
| | - Casey K. Chan
- Department of Orthopaedic Surgery National University Healthcare System Singapore 119288
| | - Seeram Ramakrishna
- Department of Mechanical Engineering National University of Singapore Singapore 117575
| |
Collapse
|
36
|
Du D, Ushida T, Furukawa KS. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater 2014; 103:84-91. [DOI: 10.1002/jbm.b.33188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Dajiang Du
- Department of Orthopaedic Surgery, Sino-Russian Institute of Hard Tissue Development and Regeneration; Harbin Medical University; Nangang Harbin 150086 China
| | - Takashi Ushida
- Division of Biomedical Materials and Systems, Center for Disease Biology and Integrative Medicine; School of Medicine, the University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Katsuko S Furukawa
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Laboratory of Biomedical Engineering, Department of Mechanical Engineering; Graduate School of Engineering, the University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
37
|
Kryukov O, Ruvinov E, Cohen S. Three-dimensional perfusion cultivation of human cardiac-derived progenitors facilitates their expansion while maintaining progenitor state. Tissue Eng Part C Methods 2014; 20:886-94. [PMID: 24568665 DOI: 10.1089/ten.tec.2013.0528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The therapeutic application of autologous cardiac-derived progenitor cells (CPCs) requires a large cell quantity generated under defined conditions. Herein, we investigated the applicability of a three-dimensional (3D) perfusion cultivation system to facilitate the expansion of CPCs harvested from human heart biopsies and characterized by a relatively high percentage of c-kit(+) cells. The cells were seeded in macroporous alginate scaffolds and after cultivation for 7 days under static conditions, some of the constructs were transferred into a perfusion bioreactor, which was operated for an additional 14 days. A robust and highly reproducible human CPC (hCPC) expansion of more than seven-fold was achieved under the 3D perfusion culture conditions, while under static conditions, the expansion of CPCs was limited only to the first 7 days, after which it leveled-off. On day 21 of perfusion cultivation, the expanded cells exhibited a higher expression level of the progenitor marker c-kit, suggesting that the c-kit-positive CPCs are the main cell population undergoing proliferation. The profile of the spontaneous differentiation in the perfused construct was different from that in the static cultivated constructs; genes typical for cardiac and endothelial cell lineages were more widely expressed in the perfused constructs. By contrast, the differentiation to osteogenic (Von Kossa staining and alkaline phosphatase activity) and adipogenic (Oil Red staining) lineages was reduced in the perfused constructs compared with static cultivated constructs. Collectively, our results indicate that 3D perfusion cultivation mode is an appropriate system for robust expansion of human CPCs while maintaining their progenitor state and differentiation potential into the cardiovascular cell lineages.
Collapse
Affiliation(s)
- Olga Kryukov
- 1 Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | | | | |
Collapse
|
38
|
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32:462-84. [PMID: 24417915 PMCID: PMC3959761 DOI: 10.1016/j.biotechadv.2013.12.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic.
Collapse
Affiliation(s)
- Christina W Cheng
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA.
| | - Loran D Solorio
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA.
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316803. [PMID: 24575406 PMCID: PMC3914586 DOI: 10.1155/2014/316803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/17/2022]
Abstract
Cellular behavior is dependent on a variety of physical cues required for normal tissue function. In order to mimic native tissue environments, human alveolar bone-derived mesenchymal stem cells (hABMSCs) were exposed to orbital shear stress (OSS) in a low-speed orbital shaker. The synergistic effects of OSS on proliferation and differentiation of hABMSCs were investigated. In particular, we induced the osteoblastic differentiation of hABMSCs cultured in the absence of OM by exposing hABMSCs to OSS (0.86-1.51 dyne/cm(2)). Activation of Cx43 was associated with exposure of hABMSCs to OSS. The viability of cells stimulated for 10, 30, 60, 120, and 180 min/day increased by approximately 10% compared with that of control. The OSS groups with stimulation of 10, 30, and 60 min/day had more intense mineralized nodules compared with the control group. In quantification of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) protein, VEGF protein levels under stimulation for 10, 60, and 180 min/day and BMP-2 levels under stimulation for 60, 120, and 180 min/day were significantly different compared with those of the control. In conclusion, the results indicated that exposing hABMSCs to OSS enhanced their differentiation and maturation.
Collapse
|
40
|
Amemiya T, Fukayo Y, Nakaoka K, Hamada Y, Hayakawa T. Tissue Response of Surface-Modified Three-Dimensional Titanium Fiber Structure. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:126-46. [PMID: 23924374 DOI: 10.1089/ten.teb.2013.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Collapse
Affiliation(s)
- Leandro S Gardel
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
42
|
Zhang Z, Jones D, Yue S, Lee P, Jones J, Sutcliffe C, Jones E. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4055-62. [DOI: 10.1016/j.msec.2013.05.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
43
|
Allori AC, Davidson EH, Reformat DD, Sailon AM, Freeman J, Vaughan A, Wootton D, Clark E, Ricci JL, Warren SM. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications. J Tissue Eng Regen Med 2013; 10:E327-E336. [DOI: 10.1002/term.1810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 01/20/2013] [Accepted: 07/22/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Alexander C. Allori
- Institute of Reconstructive Plastic Surgery; New York University Medical Center; New York NY USA
- Division of Plastic, Maxillofacial & Oral Surgery; Duke University Hospital; Durham NC USA
| | - Edward H. Davidson
- Institute of Reconstructive Plastic Surgery; New York University Medical Center; New York NY USA
| | - Derek D. Reformat
- Institute of Reconstructive Plastic Surgery; New York University Medical Center; New York NY USA
| | - Alexander M. Sailon
- Institute of Reconstructive Plastic Surgery; New York University Medical Center; New York NY USA
| | - James Freeman
- Albert Nerken School of Engineering; Cooper Union for the Advancement of Science and Art; New York NY USA
| | - Adam Vaughan
- Albert Nerken School of Engineering; Cooper Union for the Advancement of Science and Art; New York NY USA
| | - David Wootton
- Albert Nerken School of Engineering; Cooper Union for the Advancement of Science and Art; New York NY USA
| | - Elizabeth Clark
- Department of Chemical Engineering; Oklahoma State University; Oklahoma OK USA
| | - John L. Ricci
- Department of Biomaterials and Biomimetics; New York University College of Dentistry; New York NY USA
| | - Stephen M. Warren
- Institute of Reconstructive Plastic Surgery; New York University Medical Center; New York NY USA
| |
Collapse
|
44
|
Yeatts AB, Both SK, Yang W, Alghamdi HS, Yang F, Fisher JP, Jansen JA. In vivo bone regeneration using tubular perfusion system bioreactor cultured nanofibrous scaffolds. Tissue Eng Part A 2013; 20:139-46. [PMID: 23865551 DOI: 10.1089/ten.tea.2013.0168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The use of bioreactors for the in vitro culture of constructs for bone tissue engineering has become prevalent as these systems may improve the growth and differentiation of a cultured cell population. Here we utilize a tubular perfusion system (TPS) bioreactor for the in vitro culture of human mesenchymal stem cells (hMSCs) and implant the cultured constructs into rat femoral condyle defects. Using nanofibrous electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffolds, hMSCs were cultured for 10 days in vitro in the TPS bioreactor with cellular and acellular scaffolds cultured statically for 10 days as a control. After 3 and 6 weeks of in vivo culture, explants were removed and subjected to histomorphometric analysis. Results indicated more rapid bone regeneration in defects implanted with bioreactor cultured scaffolds with a new bone area of 1.23 ± 0.35 mm(2) at 21 days compared to 0.99 ± 0.43 mm(2) and 0.50 ± 0.29 mm(2) in defects implanted with statically cultured scaffolds and acellular scaffolds, respectively. At the 21 day timepoint, statistical differences (p<0.05) were only observed between defects implanted with cell containing scaffolds and the acellular control. After 42 days, however, defects implanted with TPS cultured scaffolds had the greatest new bone area with 1.72 ± 0.40 mm(2). Defects implanted with statically cultured and acellular scaffolds had a new bone area of 1.26 ± 0.43 mm(2) and 1.19 ± 0.33 mm(2), respectively. The increase in bone growth observed in defects implanted with TPS cultured scaffolds was statistically significant (p<0.05) when compared to both the static and acellular groups at this timepoint. This study demonstrates the efficacy of the TPS bioreactor to improve bone tissue regeneration and highlights the benefits of utilizing perfusion bioreactor systems to culture MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Andrew B Yeatts
- 1 Fischell Department of Bioengineering, University of Maryland , College Park, Maryland
| | | | | | | | | | | | | |
Collapse
|
45
|
Dahlin RL, Gershovich JG, Kasper FK, Mikos AG. Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds. Ann Biomed Eng 2013; 42:1381-90. [PMID: 23842695 DOI: 10.1007/s10439-013-0862-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the effect of flow perfusion culture on the mineralization of co-cultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). Osteogenically precultured hMSCs were seeded onto electrospun scaffolds in monoculture or a 1:1 ratio with HUVECs, cultured for 7 or 14 days in osteogenic medium under static or flow perfusion conditions, and the resulting constructs were analyzed for cellularity, alkaline phosphatase (ALP) activity and calcium content. In flow perfusion, constructs with monocultures of hMSCs demonstrated higher cellularity and calcium content, but lower ALP activity compared to corresponding static controls. ALP activity was enhanced in co-cultures under flow perfusion conditions, compared to hMSCs alone; however unlike the static controls, the calcium content of the co-cultures in flow perfusion was not different from the corresponding hMSC monocultures. The data suggest that co-cultures of hMSCs and HUVECs did not contribute to enhanced mineralization compared to hMSCs alone under the flow perfusion conditions investigated in this study. However, flow perfusion culture resulted in an enhanced spatial distribution of cells and matrix compared to static cultures, which were limited to a thin surface layer.
Collapse
Affiliation(s)
- Rebecca L Dahlin
- Department of Bioengineering-MS 142, Rice University, 6100 Main Street, P.O. Box 1892, Houston, TX, 77005, USA
| | | | | | | |
Collapse
|
46
|
Gardel LS, Correia-Gomes C, Serra LA, Gomes ME, Reis RL. A novel bidirectional continuous perfusion bioreactor for the culture of large-sized bone tissue-engineered constructs. J Biomed Mater Res B Appl Biomater 2013; 101:1377-86. [DOI: 10.1002/jbm.b.32955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Leandro S. Gardel
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
- Department of Clinic Veterinary; ICBAS-University of Porto; Porto Portugal
| | | | - Luís A. Serra
- Department of Ortophysiatric; General Hospital Santo António; Porto Portugal
| | - Manuela E. Gomes
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| | - Rui L. Reis
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| |
Collapse
|
47
|
Hu M, Yeh R, Lien M, Teeratananon M, Agarwal K, Qin YX. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells. Bone Res 2013; 1:98-104. [PMID: 26273495 DOI: 10.4248/br201301007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 11/10/2022] Open
Abstract
Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.
Collapse
Affiliation(s)
- Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Robbin Yeh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Michelle Lien
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Morgan Teeratananon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Kunal Agarwal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| |
Collapse
|
48
|
Weyand B, Kasper C, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM. A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores Open Access 2013; 1:145-56. [PMID: 23515420 PMCID: PMC3559213 DOI: 10.1089/biores.2012.9901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a laminar flow reactor for bone tissue engineering that was developed based on a computational fluid dynamics model. The bioreactor design permits a laminar flow field through its specific internal shape. An integrated bypass system that prevents pressure build-up through bypass openings for pressure release allows for a constant pressure environment during the changing of permeability values that are caused by cellular growth within a porous scaffold. A macroporous ceramic scaffold, composed of zirconium dioxide, was used as a test biomaterial that studies adipose stem cell behavior within a controlled three-dimensional (3D) flow and pressure environment. The topographic structure of the material provided a basis for stem cell proliferation and differentiation toward the osteogenic lineage. Dynamic culture conditions in the bioreactor supported cell viability during long-term culture and induced cell cluster formation and extra-cellular matrix deposition within the porous scaffold, though no complete closure of the pores with new-formed tissue was observed. We postulate that our system is suitable for studying fluid shear stress effects on stem cell proliferation and differentiation toward bone formation in tissue-engineered 3D constructs.
Collapse
Affiliation(s)
- Birgit Weyand
- Laboratory of Experimental Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Thibault RA, Mikos AG, Kasper FK. Winner of the 2013 Young Investigator Award for the Society for Biomaterials annual meeting and exposition, April 10-13, 2013, Boston, Massachusetts. Osteogenic differentiation of mesenchymal stem cells on demineralized and devitalized biodegradable polymer and extracellular matrix hybrid constructs. J Biomed Mater Res A 2013; 101:1225-36. [PMID: 23505119 DOI: 10.1002/jbm.a.34610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/22/2013] [Indexed: 01/20/2023]
Abstract
Devitalization and demineralization processing of biodegradable polymer and extracellular matrix (ECM) hybrid constructs was explored for the effect on the retention of ECM components and construct osteogenicity. Hybrid constructs were generated by seeding osteogenically predifferentiated rat mesenchymal stem cells (MSCs) onto electrospun poly(ε-caprolactone) fiber meshes and culturing in osteogenic medium for 12 or 16 days within a flow perfusion bioreactor to create an ECM coating. The resulting constructs were then either devitalized (using a freeze-thaw or a detergent technique), devitalized and demineralized, or left untreated, and subsequently characterized for DNA, glycosaminoglycan, collagen, and calcium content. The osteogenicity of each construct was investigated by culturing MSCs on the hybrid constructs within a flow perfusion bioreactor for 4, 8, and 12 days in osteogenic medium. Histological staining demonstrated that devitalization via the freeze-thaw method retained the thickest coating of ECM components within the constructs. Demineralization and devitalization processing of ECM coated constructs resulted in a decrease in their osteogenicity.
Collapse
Affiliation(s)
- Richard A Thibault
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | | | |
Collapse
|
50
|
|