1
|
Ramaraju H, Garcia-Gomez E, McAtee AM, Verga AS, Hollister SJ. Shape memory cycle conditions impact human bone marrow stromal cell binding to RGD- and YIGSR-conjugated poly (glycerol dodecanedioate). Acta Biomater 2024; 186:246-259. [PMID: 39111679 DOI: 10.1016/j.actbio.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery. We have previously described the development of a novel thermoresponsive bioresorbable SMP, poly (glycerol dodecanedioate) (PGD). In this study, cell-adhesive peptide sequences RGD and YIGSR were conjugated with PGD. We investigated 1) the impact of conjugated peptides on the fixity (Rf), recovery (Rr), and recovery rate (dRr/dT), 2) the impact of conjugated peptides on cell binding, and 3) the impact of the shape memory cycle (Tprog) on conjugated peptide functionality towards binding human bone marrow stromal cells (BMSC). Peptide conjugation conditions impact fixity but not the recovery or recovery rate (p < 0.01). Peptide-conjugated substrates increased cell attachment and proliferation compared with controls (p < 0.001). Using complementary integrin binding cell-adhesive peptides increased proliferation compared with using single peptides (p < 0.05). Peptides bound to PGD substrates exhibited specificity to their respective integrin targets. Following the shape memory cycle, peptides maintained functionality and specificity depending on the shape memory cycle conditions (p < 0.001). The dissipation of strain energy during recovery can drive differential arrangement of conjugated sequences impacting functionality, an important design consideration for functionalized SMPs. STATEMENT OF SIGNIFICANCE: Shape memory elastomers are an emerging class of polymers that are well-suited for minimally invasive repair of soft tissues. Tissue engineering approaches commonly utilize biodegradable scaffolds to deliver instructive cues, including cells and bioactive signals. Delivering these instructive cues on biodegradable shape memory elastomers requires modification with bioactive ligands. Furthermore, it is necessary to ensure the specificity of the ligands to their biological targets when conjugated to the polymer. Moreover, the bioactive ligand functionality must be conserved after completing the shape memory cycle, for applications in tissue engineering.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Elisa Garcia-Gomez
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annabel M McAtee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Adam S Verga
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Scott J Hollister
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Effect of Different Morphology of Titanium Surface on the Bone Healing in Defects Filled Only with Blood Clot: A New Animal Study Design. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4265474. [PMID: 30175131 PMCID: PMC6106843 DOI: 10.1155/2018/4265474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022]
Abstract
Background The objective of the present histologic animal study was to analyze whether roughness of the titanium surface can influence and/or stimulate the bone growth in defects filled with the blood using a rabbit tibia model. Materials and Methods Forty sets (implant and abutment), dental implant (3.5 mm in diameter and 7 mm in length) plus healing abutment (2.5 mm in diameter), were inserted in the tibiae of 10 rabbits. Moreover, twenty titanium discs were prepared. The abutment and discs were treated by 4 different methods and divided into 4 groups: (group A) machined abutments (smooth); (group B) double acid etching treatment; (group C) treatment with blasting with particles of aluminum oxide blasted plus acid conditioning; (group D) treatment with thorough blasting with particles of titanium oxide plus acid conditioning. The discs were used to characterize the surfaces by a profilometer and scanning electronic microscopy. Results After 8 weeks, the new bone formation around the sets of the samples was analyzed qualitatively and quantitatively in relation to bone height from the base of the implant and presence of osteocytes. Group C (1.50±0.20 mm) and group D (1.62±0.18 mm) showed bone growth on the abutment with higher values compared to group A (0.94±0.30 mm) and group B (1.19±0.23 mm), with significant difference between the groups (P < 0.05). In addition, osteocyte presence was higher in groups with surface treatment related to machined (P < 0.05). Conclusions Within the limitations of the present study, it was possible to observe that there is a direct relationship between the roughness present on the titanium surface and the stimulus for bone formation, since the presence of larger amounts of osteocytes on SLA surfaces evidenced this fact. Furthermore, the increased formation of bone tissue in height demonstrates that there is an important difference between the physical and chemical methods used for surface treatment.
Collapse
|
3
|
Brown AM, Miranda-Alarćon YS, Knoll GA, Santora AM, Banerjee IA. Fetoprotein Derived Short Peptide Coated Nanostructured Amphiphilic Surfaces for Targeting Mouse Breast Cancer Cells. INTERNATIONAL JOURNAL OF NANOSCIENCE 2017. [DOI: 10.1142/s0219581x1650023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,[Formula: see text] ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.
Collapse
Affiliation(s)
- Alexandra M. Brown
- Department of Chemistry Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA
| | | | - Grant A. Knoll
- Department of Chemistry Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA
| | - Anthony M. Santora
- Department of Chemistry Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA
| | - Ipsita A. Banerjee
- Department of Chemistry Fordham University, 441 E. Fordham Road, Bronx, NY 10458, USA
| |
Collapse
|
4
|
Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces. Colloids Surf B Biointerfaces 2016; 145:470-478. [PMID: 27236098 DOI: 10.1016/j.colsurfb.2016.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022]
Abstract
We described a modification of the ionic (RADARADARADARADA)(1) peptide or RADA16-I with 4-azidophenyl isothiocyanate via a specific and gentle reaction. The azidated peptide was covalently immobilized on an alkyne-terminated monolayer on Si(111) via the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Detailed characterization using Impedance spectroscopy (IS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy demonstrated high coverage of the RADA 16-I peptide on silicon surfaces. Scanning electron microscopy (SEM) and methyl tetrazole sulfate (MTS) assay were used to characterize the morphology and proliferation ability of human fibroblast cells on surfaces. Cell adhesion assay was performed to examine cell-substrate interactions. Significant differences in fibroblast cell morphology, adhesion, and viability were observed on the RADA16-I peptide modified surfaces compared to the control surfaces. These results may suggest a potential application of RADA16-I peptide modified surfaces in biomedical applications.
Collapse
|
5
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
6
|
Choi H, Park NJ, Jamiyandorj O, Hong MH, Oh S, Park YB, Kim S. Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences. J Periodontal Implant Sci 2012. [PMID: 23185697 PMCID: PMC3498301 DOI: 10.5051/jpis.2012.42.5.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Purpose The aim of this study was to evaluate the improvement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with synthetic cell-binding peptide sequences in a standardized rabbit sinus model. Methods Standardized 6-mm diameter defects were created bilaterally on the maxillary sinus of ten male New Zealand white rabbits, receiving BCP bone substitute coated with synthetic cell binding peptide sequences on one side (experimental group) and BCP bone substitute without coating (control group) on the other side. Histologic and histomorphometric analysis of bone formation was carried out after a healing period of 4 or 8 weeks. Results Histological analysis revealed signs of new bone formation in both experimental groups (4- and 8-week healing groups) with a statistically significant increase in bone formation in the 4-week healing group compared to the control group. However, no statistically significant difference in bone formation was found between the 8-week healing group and the control group. Conclusions This study found that BCP bone substitute coated with synthetic cell-binding peptide sequences enhanced osteoinductive potential in a standardized rabbit sinus model and its effectiveness was greater in the 4-week healing group than in the 8-week healing group.
Collapse
Affiliation(s)
- Hyunmin Choi
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliv Rev 2012; 64:1220-38. [PMID: 22709649 DOI: 10.1016/j.addr.2012.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 01/26/2023]
Abstract
Peptides are attractive as novel therapeutic reagents, since they are flexible in adopting and mimicking the local structural features of proteins. Versatile capabilities to perform organic synthetic manipulations are another unique feature of peptides compared to protein-based medicines, such as antibodies. On the other hand, a disadvantage of using a peptide for a therapeutic purpose is its low stability and/or high level of aggregation. During the past two decades, numerous peptides were developed for the treatment of bone diseases, and some peptides have already been used for local applications to repair bone defects in the clinic. However, very few peptides have the ability to form bone themselves. We herein summarize the effects of the therapeutic peptides on bone loss and/or local bone defects, including the results from basic studies. We also herein describe some possible methods for overcoming the obstacles associated with using therapeutic peptide candidates.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Dept. of Hard Tissue Engineering (Pharmacology), Graduate School, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
8
|
Rickert D. Polymeric implant materials for the reconstruction of tracheal and pharyngeal mucosal defects in head and neck surgery. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc06. [PMID: 22073099 PMCID: PMC3199816 DOI: 10.3205/cto000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The existing therapeutical options for the tracheal and pharyngeal reconstruction by use of implant materials are described. Inspite of a multitude of options and the availability of very different materials none of these methods applied for tracheal reconstruction were successfully introduced into the clinical routine. Essential problems are insufficiencies of anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The advances in Tissue Engineering (TE) offer new therapeutical options also in the field of the reconstructive surgery of the trachea. In pharyngeal reconstruction far reaching developments cannot be recognized at the moment which would allow to give a prognosis of their success in clinical application. A new polymeric implant material consisting of multiblock copolymers was applied in our own work which was regarded as a promising material for the reconstruction of the upper aerodigestive tract (ADT) due to its physicochemical characteristics. In order to test this material for applications in the ADT under extreme chemical, enzymatical, bacterial and mechanical conditions we applied it for the reconstruction of a complete defect of the gastric wall in an animal model. In none of the animals tested either gastrointestinal complications or negative systemic events occurred, however, there was a multilayered regeneration of the gastric wall implying a regular structured mucosa. In future the advanced stem cell technology will allow further progress in the reconstruction of different kind of tissues also in the field of head and neck surgery following the principles of Tissue Engineering.
Collapse
Affiliation(s)
- Dorothee Rickert
- University Hospital and Ambulance for Ear, Nose and Throat Diseases, Ulm, Germany
| |
Collapse
|
9
|
Abstract
We present many examples of surface engineered polymeric biomaterials with nanosize modified layers, controlled protein adsorption, and cellular interactions potentially applicable for tissue and/or blood contacting devices, scaffolds for cell culture and tissue engineering, biosensors, biological microchips as well as approaches to their preparation.
Collapse
|
10
|
Zheng Z, Zhang L, Kong L, Wang A, Gong Y, Zhang X. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: Effect of nanotopography, surface chemistry, and wettability. J Biomed Mater Res A 2009; 89:453-65. [DOI: 10.1002/jbm.a.31979] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2008; 26:612-30. [PMID: 19085091 DOI: 10.1007/s11095-008-9802-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 12/01/2008] [Indexed: 12/28/2022]
Abstract
Peptides produce specific nanostructures, making them useful for targeting in biological systems but they have low bioavailability, potential immunogenicity and poor metabolic stability. Peptidomimetic self-assembled NPs can possess biological recognition motifs as well as providing desired engineering properties. Inorganic NPs, coated with self-assembled macromers for stability and anti-fouling, and conjugated with target-specific ligands, are advancing imaging from the anatomy-based level to the molecular level. Ligand conjugated NPs are attractive for cell-selective tumor drug delivery, since this process has high transport capacity as well as ligand dependent cell specificity. Peptidomimetic NPs can provide stronger interaction with surface receptors on tumor cells, resulting in higher uptake and reduced drug resistance. Self-assembled NPs conjugated with peptidomimetic antigens are ideal for sustained presentation of vaccine antigens to dendritic cells and subsequent activation of T cell mediated adaptive immune response. Self-assembled NPs are a viable alternative to encapsulation for sustained delivery of proteins in tissue engineering. Cell penetrating peptides conjugated to NPs are used as intracellular delivery vectors for gene expression and as transfection agents for plasmid delivery. In this work, synthesis, characterization, properties, immunogenicity, and medical applications of peptidomimetic NPs in imaging, tumor delivery, vaccination, tissue engineering, and intracellular delivery are reviewed.
Collapse
|
12
|
Iezzi G, Degidi M, Scarano A, Petrone G, Piattelli A. Anorganic Bone Matrix Retrieved 14 Years After a Sinus Augmentation Procedure: A Histologic and Histomorphometric Evaluation. J Periodontol 2007; 78:2057-61. [DOI: 10.1902/jop.2007.070062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Artzi Z, Weinreb M, Tal H, Nemcovsky CE, Rohrer MD, Prasad HS, Kozlovsky A. Experimental Intrabony and Periodontal Defects Treated With Natural Mineral Combined With a Synthetic Cell-Binding Peptide in the Canine: Morphometric Evaluations. J Periodontol 2006; 77:1658-64. [PMID: 17032107 DOI: 10.1902/jop.2006.060041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A synthetic peptide (P-15) analog of collagen added to anorganic bovine bone mineral (ABM) has recently been used as an enhanced bone graft material (ABM/P-15). The objective of this study was to test the contribution of ABM/P-15 in a new putty form (PEP) in two experimental membrane-protected defects: periodontal and intrabony. Its efficacy as filler biomaterial in guided tissue regeneration (GTR) and guided bone regeneration (GBR) procedures was evaluated histologically and morphometrically. METHODS In the maxillary canines, a facial mucoperiosteal flap was raised bilaterally in nine dogs. Two circular defects, 5 mm in diameter and 2 mm in depth, were made on each side: a fenestrated periodontal on the canine root and an intrabony in the alveolar diastema, anteriorly. PEP particles filled both defects on one side; the contralateral side was blood filled (control). All surgical sites were covered with a bioabsorbable membrane. Histologically, at 4 months, tissue blocks were made using the cutting/grinding non-decalcification method followed by morphometric analysis. In the periodontal fenestration root surface, the linear percentage of new cementum (%CEM), area percentage of new bone (%NB), and residual biomaterial particles (%PEP) were calculated. These same measurements were calculated at the intrabony sites, except cementum. The amount of direct NB to PEP contact was measured to assess the osteoconductivity level (OSC). The Pearson correlation test was used to evaluate any significant relationship between the different measured parameters. RESULTS In the grafted and non-grafted fenestration root surface defects, %CEM averaged 59.5% and 73.9% (P <0.02), respectively; %NB averaged 36.1% and 31.4%, respectively; and %PEP averaged 20.6%. The mean percentage of OSC was 52.4%. In the intrabony grafted and non-grafted sites, %NB averaged 50.7% and 60.1%, respectively (P <0.02). Residual %PEP averaged 26.1%, and OSC averaged 35.6%. At the intrabony sites, higher %NB and lower %OSC were found compared to the fenestration sites (P <0.001 and P <0.03, respectively). Correlation analysis showed a negative correlation between %NB and %PEP at the fenestration defects. In between the two defect types, %OSC was significantly correlated (P <0.05). CONCLUSIONS ABM/P-15 putty showed osteoconductive and biocompatible qualities. However, at 4 months in this model, no enhanced regeneration was present compared to a higher CEM and NB growth detected at non-grafted membrane-protected sites.
Collapse
Affiliation(s)
- Zvi Artzi
- Department of Periodontology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|