1
|
Enax J, Meyer F, Schulze zur Wiesche E, Epple M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4075. [PMID: 36432359 PMCID: PMC9693044 DOI: 10.3390/nano12224075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The human body needs calcium and phosphate as essential nutrients to grow bones and teeth, but they are also necessary for many other biochemical purposes (e.g., the biosynthesis of phospholipids, adenosine triphosphate, ATP, or DNA). The use of solid calcium phosphate in particle form as a food additive is reviewed and discussed in terms of bioavailability and its safety after ingestion. The fact that all calcium phosphates, such as hydroxyapatite and tricalcium phosphate, are soluble in the acidic environment of the stomach, regardless of the particle size or phase, means that they are present as dissolved ions after passing through the stomach. These dissolved ions cannot be distinguished from a mixture of calcium and phosphate ions that were ingested separately, e.g., from cheese or milk together with soft drinks or meat. Milk, including human breast milk, is a natural source of calcium and phosphate in which calcium phosphate is present as nanoscopic clusters (nanoparticles) inside casein (protein) micelles. It is concluded that calcium phosphates are generally safe as food additives, also in baby formula.
Collapse
Affiliation(s)
- Joachim Enax
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Frederic Meyer
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Erik Schulze zur Wiesche
- Dr. Kurt Wolff GmbH & Co. KG, Research Department, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
2
|
Chen S, Wang Q, Eltit F, Guo Y, Cox M, Wang R. An Ammonia-Induced Calcium Phosphate Nanostructure: A Potential Assay for Studying Osteoporosis and Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17207-17219. [PMID: 33845570 DOI: 10.1021/acsami.1c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Osteoclastic resorption of bones plays a central role in both osteoporosis and bone metastasis. A reliable in vitro assay that simulates osteoclastic resorption in vivo would significantly speed up the process of developing effective therapeutic solutions for those diseases. Here, we reported the development of a novel and robust nanostructured calcium phosphate coating with unique functions on the track-etched porous membrane by using an ammonia-induced mineralization (AiM) technique. The calcium phosphate coating uniformly covers one side of the PET membrane, enabling testing for osteoclastic resorption. The track-etched pores in the PET membrane allow calcium phosphate mineral pins to grow inside, which, on the one hand, enhances coating integration with a membrane substrate and, on the other hand, provides diffusion channels for delivering drugs from the lower chamber of a double-chamber cell culture system. The applications of the processed calcium phosphate coating were first demonstrated as a drug screening device by using alendronate, a widely used drug for osteoporosis. It was confirmed that the delivery of alendronate significantly decreased both the number of monocyte-differentiated osteoclasts and coating resorption. To demonstrate the application in studying bone metastasis, we delivered a PC3 prostate cancer-conditioned medium and confirmed that both the differentiation of monocytes into osteoclasts and the osteoclastic resorption of the calcium phosphate coating were significantly enhanced. This novel assay thus provides a new platform for studying osteoclastic activities and assessing drug efficacy in vitro.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yubin Guo
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Cox
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
3
|
Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
4
|
Mochizuki C, Hara H, Oya K, Aoki S, Hayakawa T, Fujie H, Sato M. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:245-52. [DOI: 10.1016/j.msec.2014.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 01/18/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
5
|
Maria SM, Prukner C, Sheikh Z, Mueller F, Barralet JE, Komarova SV. Reproducible quantification of osteoclastic activity: characterization of a biomimetic calcium phosphate assay. J Biomed Mater Res B Appl Biomater 2013; 102:903-12. [PMID: 24259122 DOI: 10.1002/jbm.b.33071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/31/2013] [Accepted: 10/13/2013] [Indexed: 11/12/2022]
Abstract
Osteoclasts are responsible for bone and joint destruction in rheumatoid arthritis, periodontitis, and osteoporosis. Animal tusk slice assays are standard for evaluating the effect of therapeutics on these cells. However, in addition to batch-to-batch variability inherent to animal tusks, their use is clearly not sustainable. Our objective was to develop and characterize a biomimetic calcium phosphate assay based on the use of phase pure hydroxyapatite coated as a thin film on the surface of culture plates, to facilitate the reproducible quantification of osteoclast resorptive activity. Osteoclasts were formed from RAW 264.7 mouse monocyte cell line using a pro-resorptive cytokine RANKL (50 ng/mL). No change in substrate appearance was noted after culture with media without cells, or undifferentiated monocytes. Only in the presence of osteoclasts localized areas of calcium phosphate dissolution were observed. The total area resorbed positively correlated with the osteoclast numbers (R(2) = 0.99). The resorbed area was significantly increased by the addition of RANKL, and decreased after application of known inhibitors of osteoclast resorptive activity, calcitonin (10 μM), or alendronate (100 μM). Thus, calcium phosphate coated substrates allow reliable monitoring of osteoclast resorptive activity and offer an alternative to animal tusk slice assays.
Collapse
Affiliation(s)
- Salwa M Maria
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Lin X, Tan L, Wang Q, Zhang G, Zhang B, Yang K. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3881-8. [DOI: 10.1016/j.msec.2013.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 01/08/2023]
|
7
|
Application of carbonated apatite coating on a Ti substrate by aqueous spray method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:951-8. [DOI: 10.1016/j.msec.2012.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 11/21/2022]
|
8
|
Dorozhkin SV. Calcium orthophosphate coatings, films and layers. Prog Biomater 2012; 1:1. [PMID: 29470670 PMCID: PMC5120666 DOI: 10.1186/2194-0517-1-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022] Open
Abstract
In surgical disciplines, where bones have to be repaired, augmented or improved, bone substitutes are essential. Therefore, an interest has dramatically increased in application of synthetic bone grafts. As various interactions among cells, surrounding tissues and implanted biomaterials always occur at the interfaces, the surface properties of the implants are of the paramount importance in determining both the biological response to implants and the material response to the physiological conditions. Hence, a surface engineering is aimed to modify both the biomaterials, themselves, and biological responses through introducing desirable changes to the surface properties of the implants but still maintaining their bulk mechanical properties. To fulfill these requirements, a special class of artificial bone grafts has been introduced in 1976. It is composed of various mechanically stable (therefore, suitable for load bearing applications) biomaterials and/or bio-devices with calcium orthophosphate coatings, films and layers on their surfaces to both improve interactions with the surrounding tissues and provide an adequate bonding to bones. Many production techniques of calcium orthophosphate coatings, films and layers have been already invented and new promising techniques are continuously investigated. These specialized coatings, films and layers used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
9
|
Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater 2012; 8:1137-45. [PMID: 22178652 DOI: 10.1016/j.actbio.2011.11.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 12/20/2022]
Abstract
It is recognized that the surface roughness affects osteoblastic differentiation, but little information is available regarding its effect on osteoclastogenesis. With this work, the osteoclastogenic behaviour of human peripheral blood mononuclear cells (PBMCs), cultured isolated (1.5×10(6)cellscm(-2)) or co-cultured with human bone marrow cells (hBMCs; 10(3)cellscm(-2)), was assessed on surface-abraded hydroxyapatite disks with three different surface roughnesses (R(a) 0.0437-0.582 μm). Monocultures and co-cultures were performed for 21 days in the absence or presence of recombinant M-CSF and RANKL. Results showed that PBMCs supplemented with M-CSF and RANKL or co-cultured with hBMCs displayed typical osteoclastic features, i.e. multinucleated cells with actin rings, vitronectin and calcitonin receptors, gene expression of TRAP, cathepsin K, carbonic anhydrase 2, c-myc and c-src, TRAP activity and resorbing activity. The osteoclastogenic response increased with surface roughness in PBMCs cultured with M-CSF and RANKL but decreased in PBMCs co-cultured with hBMCs. However, co-cultures supplemented with the osteoclastogenic inducers displayed high and similar levels of osteoclast differentiation in the three tested surfaces. In conclusion, modulation of osteoclast differentiation by surface roughness seemed to be dependent on the mechanisms subjacent to the osteoclastogenic stimulus, i.e. the presence of soluble factors or direct cell-to-cell contacts between osteoblastic and osteoclastic cells.
Collapse
|
10
|
Seol YJ, Kim KH, Kim IA, Rhee SH. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. J Biomed Mater Res A 2010; 94:649-59. [PMID: 20213814 DOI: 10.1002/jbm.a.32738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A nonwoven ceramic/polymer composite fabric composed of randomly mixed bioactive and fast degradable CaO-SiO(2) gel fibers and biodegradable poly(epsilon-caprolactone) (PCL) fibers is prepared with a simultaneous electrospinning method for potential use as bone grafting materials. A 17% PCL solution is prepared using 1,1,3,3-hexafluoro-2-propanol as the solvent, whereas the CaO-SiO(2) gel solution is prepared via a condensation reaction following the hydrolysis of tetraethyl orthosilicate. PCL and CaO-SiO(2) gel solutions are spun simultaneously with two separate nozzles. As controls, pure PCL and CaO-SiO(2) gel nonwoven fabrics are also made by the same methods. The three nonwoven fabrics were exposed to simulated body fluid for 1 week and resulted in the deposition of a layer of apatite crystals on the surfaces of both the CaO-SiO(2) gel and PCL/CaO-SiO(2) gel composite fabrics, but not on the PCL fabric. A tensile strength test showed that the fracture behavior of the CaO-SiO(2) gel fabric was brittle, that of the PCL fabric was ductile-tough, and that of the PCL/CaO-SiO(2) gel composite fabric was intermediate between that of the CaO-SiO(2) gel and PCL fabrics. Our in vivo tests showed that the CaO-SiO(2) gel and PCL/CaO-SiO(2) gel composite fabrics had good osteoconductivity and fast degradation rates in calvarial defects of New Zealand white rabbits within 4 weeks, in contrast to the pure PCL fabric. Together, these results suggest that the composite fabric composed of PCL and CaO-SiO(2) gel fibers must have a great potential for use in applications such as bone grafting because of its good osteoconductivity and adequate mechanical properties.
Collapse
Affiliation(s)
- Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Yeongeon 28, Jongno, Seoul 110-749, Korea
| | | | | | | |
Collapse
|
11
|
Winkler T, Hoenig E, Gildenhaar R, Berger G, Fritsch D, Janssen R, Morlock M, Schilling A. Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities. Acta Biomater 2010; 6:4127-35. [PMID: 20451677 DOI: 10.1016/j.actbio.2010.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/18/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Commonly, to determine osteoclastic resorption of biomaterials only the resorbed area is measured. The depth of the resorption pit, however, may also be important for the performance of a material. To generate such data we used two calcium phosphate ceramics (Ca(10) and Ca(2)). The solubility of the materials was determined according to DIN EN ISO 10993-14. They were scanned three-dimensionally using infinite focus microscopy and subsequently cultivated for 4 weeks in simulated body fluid without (control) or with human osteoclasts. After this cultivation period osteoclasts number was determined and surface changes were evaluated two- and three-dimensionally. Ca(10) and Ca(2) showed solubilities of 11.0+/-0.5 and 23.0+/-2.2 mgg(-1), respectively. Both materials induced a significant increase in osteoclast number. While Ca(10) did not show osteoclastic resorption, Ca(2) showed an increased pit area and pit volume due to osteoclastic action. This was caused by an increased average pit depth and an increased number of pits, while the average area of single pits did not change significantly. The deduced volumetric osteoclastic resorption rate (vORR) of Ca(2) (0.01-0.02 microm(3)microm(-2)day(-1)) was lower than the remodelling speed observed in vivo (0.08 microm(3)microm(-2)day(-1)), which is in line with the observation that implanted resorbable materials remain in the body longer than originally expected. Determination of volumetric indices of osteoclastic resorption might be valuable in obtaining additional information about cellular resorption of bone substitute materials. This may help facilitate the development of novel materials for bone substitution.
Collapse
|
12
|
Detsch R, Hagmeyer D, Neumann M, Schaefer S, Vortkamp A, Wuelling M, Ziegler G, Epple M. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater 2010; 6:3223-33. [PMID: 20206720 DOI: 10.1016/j.actbio.2010.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 12/30/2022]
Abstract
Nanocrystalline calcium phosphates containing carbonate have a high similarity to bone mineral. The reactions of bone cells (primary osteoblasts and osteoclast-like cells) on these materials as well as on sintered beta-tricalcium phosphate and hydroxyapatite (HA) confirmed a good biocompatibility of the nanocrystalline samples. However, osteoclastic differentiation was constrained on the carbonate-rich samples, leading to a small number of osteoclast-like cells on the materials and few resorption pits. The grain size of the calcium phosphate ceramics (nano vs. micro) was less important than expected from to physico-chemical considerations. When comparing the nanocrystalline samples, the highest resorption rate was found for nano-HA with a low carbonate content, which strongly stimulated the differentiation of osteoclast-like cells on its surface.
Collapse
Affiliation(s)
- R Detsch
- BioCer EntwicklungsGmbH, Ludwig-Thoma-Str. 36c, 95447 Bayreuth, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M, Worch H, Hanke T. Bioactive silica-collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater 2009; 5:1979-90. [PMID: 19345651 DOI: 10.1016/j.actbio.2009.02.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/06/2009] [Accepted: 02/03/2009] [Indexed: 11/29/2022]
Abstract
The development of composites has been recognized as a promising strategy to fulfil the complex requirements of biomaterials. The present study reports on the modification of a novel silica-collagen composite material by varying the inorganic/organic mass ratio and introducing calcium phosphate cement (CPC) as a third component. The sol-gel technique is used for processing, followed by xerogel formation under specific temperature and relative humidity conditions. Cylindrical monolithic samples up to 400mm(3) were obtained without any sintering processes. Various hierarchical phases of the organic component were applied, ranging from tropocollagen and collagen fibrils up to collagen fibers, each characterized by atomic force microscopy. Focusing on the application of fibrils, various inorganic/organic mass ratios were used: 100/0, 85/15 and 70/30; their influence on the structure of the composite material was demonstrated by scanning electron microscopy. The composition was extended by the addition of 25wt.% CPC which led to increased bioactivity by accelerating the formation of bone apatite layers in simulated body fluid. Synchrotron microcomputed tomography demonstrated the homogeneous distribution of the cement particles in the silica-collagen matrix. Compressive strength tests showed that the mechanical properties of the brittle pure silica gel are changed significantly due to collagen addition. The highest ultimate strength of about 115MPa at about 18% total strain was registered for the 70/30 silica-collagen composite xerogels. Incorporation of CPC lowered the gel's strength. By demonstrating differentiation of human monocytes into osteoclast-like cells, an important feature of the composite material regarding successful bone remodeling is fulfilled.
Collapse
Affiliation(s)
- Sascha Heinemann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Dresden University of Technology, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Siebers MC, Wolke JGC, Walboomers XF, Leeuwenburgh SCG, Jansen JA. In vivo evaluation of the trabecular bone behavior to porous electrostatic spray deposition-derived calcium phosphate coatings. Clin Oral Implants Res 2007; 18:354-61. [PMID: 17298493 DOI: 10.1111/j.1600-0501.2006.01314.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Electrostatic spray deposition (ESD) is a new technique to deposit calcium phosphate (CaP) coatings. The aim of the present study was to evaluate the bone behavior of ESD CaP-coated implants with various degrees of crystallinities in the trabecular bone of the femoral condyle of goats. MATERIAL AND METHODS Using the ESD technique, thin porous CaP coatings were deposited on tapered, conical, screw-shaped titanium implants. Three different heat-treatments were applied, resulting in amorphous CaP (400 degrees C, ESD1), crystalline carbonate apatite (500 degrees C, ESD2), and crystalline carbonated hydroxyapatite (700 degrees C, ESD3). Implants were inserted into the trabecular bone of the femoral condyles of goats for 12 weeks, and titanium (Ti) implants served as controls. RESULTS The results showed that ESD-derived coatings are osteocompatible. Histomorphometrical analysis showed that the application of a CaP coating resulted in more bone contact along the press-fit area of the implant compared with the Ti implants. Moreover, the percentage bone contact of the ESD3-coated implants was increased, compared with the Ti control group. Regarding the other coatings, no differences were found compared with the control group. CONCLUSION Crystalline carbonated hydroxyapatite ESD-coated implants positively influenced the biological performance compared with Ti control implants.
Collapse
Affiliation(s)
- Marijke C Siebers
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Manders PJD, Wolke JGC, Jansen JA. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Clin Oral Implants Res 2006; 17:548-53. [PMID: 16958695 DOI: 10.1111/j.1600-0501.2006.01263.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A new technique to deposit calcium phosphate (CaP) coatings onto titanium substrates has been developed recently. This electrostatic spray deposition (ESD) technique seems to be very promising. It appears to have clinical advantages such as an inexpensive and simple set-up, high deposition efficiency and the possibility to synthesize layers with a defined surface morphology. OBJECTIVE The aim of this study was to examine biological properties and osteoconductivity of ESD CaP coatings when inserted into the femoral condyle of a goat. MATERIAL AND METHODS Twenty-four implants with two gaps, i.e. 1 or 2 mm, were inserted into the femoral condyles of six goats. The implants were coated on one side with either a commercially available plasma-sprayed hydroxyapatite (HAPS) coating or an ESD carbonate apatite (CAESD) coating. The other side of the implant was always left uncoated (Ti). Twelve weeks after implantation the animals were sacrificed and the characteristics of bone ingrowth and bone contact were evaluated. RESULTS At 3 months, histological and quantitative histomorphometrical measurements demonstrated more bone ingrowth and bone contact for coated sites as compared with uncoated sites. Statistical testing revealed that for both the 1 and 2 mm gaps HAPS (plasma-sprayed hydroxyapatite) as well as CAESD (ESD carbonate apatite) -coated surfaces always had a significantly higher (P<0.05) amount of bone contact than uncoated Ti surfaces. On HAPS surfaces always significantly more bone was present than on CAESD surfaces. Further statistical testing revealed a significant difference in bone ingrowth between the HAPS as well as CAESD and Ti 1+2 mm gap specimens (P<0.05). Further, HAPS 1 mm gaps showed more bone ingrowth than CAESD 1 mm gaps. No significant difference existed between HAPS and CAESD 2 mm gaps. CONCLUSION On the basis of our observations, we conclude that the used ESD technique is a promising new method to deposit CaP coatings onto titanium substrates. On the other hand, plasma-spray HA-coated implants have a still more favourable effect on the bone response.
Collapse
Affiliation(s)
- Peter J D Manders
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Center, THK 117 Radboud, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|