1
|
McKiel LA, Ballantyne LL, Negri GL, Woodhouse KA, Fitzpatrick LE. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an in vitro biomaterial host response model. Front Immunol 2023; 14:1232586. [PMID: 37691934 PMCID: PMC10491479 DOI: 10.3389/fimmu.2023.1232586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1β, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Collapse
Affiliation(s)
- Laura A. McKiel
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Laurel L. Ballantyne
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
| | | | - Kimberly A. Woodhouse
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
| | - Lindsay E. Fitzpatrick
- Department of Chemical Engineering, Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON, Canada
- Centre for Health Innovation, Queen’s University and Kingston Health Sciences, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
2
|
Multimodal microwheel swarms for targeting in three-dimensional networks. Sci Rep 2022; 12:5078. [PMID: 35332242 PMCID: PMC8948265 DOI: 10.1038/s41598-022-09177-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Microscale bots intended for targeted drug delivery must move through three-dimensional (3D) environments that include bifurcations, inclined surfaces, and curvature. In previous studies, we have shown that magnetically actuated colloidal microwheels (µwheels) reversibly assembled from superparamagnetic beads can translate rapidly and be readily directed. Here we show that, at high concentrations, µwheels assemble into swarms that, depending on applied magnetic field actuation patterns, can be designed to transport cargo, climb steep inclines, spread over large areas, or provide mechanical action. We test the ability of these multimodal swarms to navigate through complex, inclined microenvironments by characterizing the translation and dispersion of individual µwheels and swarms of µwheels on steeply inclined and flat surfaces. Swarms are then studied within branching 3D vascular models with multiple turns where good targeting efficiencies are achieved over centimeter length scales. With this approach, we present a readily reconfigurable swarm platform capable of navigating through 3D microenvironments.
Collapse
|
3
|
Sefton MV, Gorbet MB. Nonthrombogenic Treatments and Strategies. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Gorbet M, Sperling C, Maitz MF, Siedlecki CA, Werner C, Sefton MV. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater 2019; 94:25-32. [PMID: 31226478 DOI: 10.1016/j.actbio.2019.06.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Christopher A Siedlecki
- Departments of Surgery and Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Vafa Homann M, Johansson D, Wallen H, Sanchez J. Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating. J Biomed Mater Res B Appl Biomater 2016; 104:1359-65. [PMID: 26698606 PMCID: PMC5054833 DOI: 10.1002/jbm.b.33403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA-coated CVC according to ISO 10993-4. Hemolysis, thrombin-antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b-9 complement activation were analyzed in human blood exposed to the NMA-coated and control CVCs using a Chandler-loop model. NMA-coated CVC did not induce hemolysis and fell in the "nonhemolytic" category according to ASTM F756-00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA-coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA-coated CVC compared to uncoated ones. These data suggest that the NMA-coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359-1365, 2016.
Collapse
Affiliation(s)
| | - Dorota Johansson
- Research and Development Department, Bactiguard AB, Stockholm, Sweden
| | - Håkan Wallen
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Javier Sanchez
- Research and Development Department, Bactiguard AB, Stockholm, Sweden.
- Division of internal and Cardiovascular Medicine, Department of Clinical Science Danderyd Hospital, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Kim YK, Chen EY, Liu WF. Biomolecular strategies to modulate the macrophage response to implanted materials. J Mater Chem B 2015; 4:1600-1609. [PMID: 32263014 DOI: 10.1039/c5tb01605c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The material-induced foreign body response is a major challenge for implanted medical devices. This review highlights recent developments in biomimetic approaches to create biomaterials that mitigate the host response to biomaterials. Specifically, we will describe strategies in which biomaterials are decorated with endogenously expressed biomolecules that naturally modulate the function of immune cells. These include molecules that directly bind to and interact with immune cells, as well as molecules that control complement activation or thrombosis and indirectly modulate immune cell function. We provide perspective on how these approaches may impact the design of materials for medical devices and tissue engineering.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
7
|
Rooney MK, Woodhouse KA. Decreased tissue factor expression with increased CD11b upregulation on elastin-based biomaterial coatings. Biomater Sci 2014; 2:1377-1383. [DOI: 10.1039/c4bm00099d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Love RJ, Jones KS. The recognition of biomaterials: pattern recognition of medical polymers and their adsorbed biomolecules. J Biomed Mater Res A 2013; 101:2740-52. [PMID: 23613455 DOI: 10.1002/jbm.a.34577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/04/2013] [Indexed: 12/31/2022]
Abstract
All biomedical materials are recognized as foreign entities by the host immune system despite the substantial range of different materials that have been developed by material scientists and engineers. Hydrophobic biomaterials, hydrogels, biomaterials with low protein binding surfaces, and those that readily adsorb a protein layer all seem to incite similar host responses in vivo that may differ in magnitude, but ultimately result in encapsulation by fibrotic tissue. The recognition of medical materials by the host is explained by the very intricate pattern recognition system made up of integrins, toll-like receptors, scavenger receptors, and other surface proteins that enable leukocytes to perceive almost any foreign body. In this review, we describe the various pattern recognition receptors and processes that occur on biomedical material surfaces that permit detection of a range of materials within the host.
Collapse
Affiliation(s)
- Ryan J Love
- School of Biomedical Engineering, McMaster University, Hamilton, Ontarion, Canada
| | | |
Collapse
|
9
|
Guldner NW, Bastian F, Weigel G, Zimmermann H, Maleika M, Scharfschwerdt M, Rohde D, Sievers HH. Nanocoating with titanium reduces iC3b- and granulocyte-activating immune response against glutaraldehyde-fixed bovine pericardium: A new technique to improve biologic heart valve prosthesis durability? J Thorac Cardiovasc Surg 2012; 143:1152-9. [DOI: 10.1016/j.jtcvs.2011.10.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/05/2011] [Accepted: 10/26/2011] [Indexed: 11/30/2022]
|
10
|
|
11
|
Arima Y, Toda M, Iwata H. Surface plasmon resonance in monitoring of complement activation on biomaterials. Adv Drug Deliv Rev 2011; 63:988-99. [PMID: 21803085 DOI: 10.1016/j.addr.2011.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/12/2022]
Abstract
When artificial materials come into contact with blood, various biological responses are induced. For successful development of biomaterials used in biomedical devices that will be exposed to blood, understanding and control of these interactions are essential. Surface plasmon resonance (SPR) spectroscopy is one of the surface-sensitive optical methods to monitor biological interactions. SPR enables real-time and in situ analysis of interfacial events associated with biomaterials research. In this review, we describe an SPR biosensor and its application to monitor complement activation onto biomaterials surface. We also discuss the effect of surface properties of the material on complement activation.
Collapse
Affiliation(s)
- Yusuke Arima
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606–8507, Japan
| | | | | |
Collapse
|
12
|
Fischer M, Sperling C, Tengvall P, Werner C. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression. Biomaterials 2010; 31:2498-507. [DOI: 10.1016/j.biomaterials.2009.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/03/2009] [Indexed: 11/17/2022]
|
13
|
Arima Y, Kawagoe M, Toda M, Iwata H. Complement activation by polymers carrying hydroxyl groups. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2400-2407. [PMID: 20355878 DOI: 10.1021/am9005463] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hydrogels of polymers carrying surface hydroxyl groups strongly activate the complement system through the alternative pathway, although it has also been reported that solutions of polymers do not. To address these curious, inconsistent results, we examined the effect of polymer states, either immobilized on a surface or soluble in serum, on the complement activation using a surface plasmon resonance apparatus and enzyme-linked immunosorbent assay. We clearly showed that dextran- and poly(vinyl alcohol)-immobilized surfaces strongly activated the complement system but that soluble polymers could not, even when the amounts of the soluble polymers added to serum were 4-2000 times higher than those on the polymer-immobilized surfaces.
Collapse
Affiliation(s)
- Yusuke Arima
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
14
|
Bastian F, Stelzmüller ME, Kratochwill K, Kasimir MT, Simon P, Weigel G. IgG deposition and activation of the classical complement pathway involvement in the activation of human granulocytes by decellularized porcine heart valve tissue. Biomaterials 2008; 29:1824-32. [DOI: 10.1016/j.biomaterials.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
15
|
Complement activation on surfaces modified with ethylene glycol units. Biomaterials 2008; 29:551-60. [DOI: 10.1016/j.biomaterials.2007.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/14/2007] [Indexed: 11/18/2022]
|
16
|
Swartz MA, Hubbell JA, Reddy ST. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin Immunol 2008; 20:147-56. [PMID: 18201895 DOI: 10.1016/j.smim.2007.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 01/12/2023]
Abstract
The slow interstitial flow that drains fluid from the blood capillaries into the lymphatic capillaries provides transport of macromolecular nutrients to cells in the interstitium. We discuss herein how this flow also provides continuous access to immune cells residing in the lymph nodes of antigens from self or from pathogens residing in the interstitium. We also address mechanisms by which dendritic cells in the periphery sense interstitial flow to home efficiently into the lymphatics after activation, and how lymphatic endothelium can be activated by this flow, including how it can act as a lymphatic morphoregulator. Further, we present concepts on how interstitial flow can be exploited with biomaterial systems to deliver antigen and adjuvant molecules directly into the lymphatics, to target dendritic cells residing in the lymph nodes rather than in the peripheral tissues, using particles that are small enough to be carried along by flow through the network structure of the interstitium. Finally, we present recent work on lymphatic and lymphoid tissue engineering, including how interstitial flow can be used as a design principle. Thus, an understanding of the physiological processes that govern transport in the interstitium guides new understanding of both immune cell interactions with the lymphatics as well as therapeutic interventions exploiting the lymphatics as a target.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|
17
|
Jackson JK, Hung T, Letchford K, Burt HM. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Int J Pharm 2007; 342:6-17. [PMID: 17555895 DOI: 10.1016/j.ijpharm.2007.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/20/2022]
Abstract
Paclitaxel-loaded biodegradable drug delivery systems manufactured from poly(lactic-co-glycolic acid) (PLGA) are known to release the drug at extremely slow rates. The objective of this study was to characterize paclitaxel-loaded microspheres composed of blends of PLGA with low molecular weight ampipathic diblock copolymers. The encapsulation and release of a series of poly(epsilon-caprolactone) (PCL)- or poly(D,L-lactic acid) (PDLLA)-co-methoxypolyethylene glycol (MePEG) diblock copolymers was measured using quantitative gel permeation chromatography. Polymeric miscibility was determined by glass transition temperature measurements using differential scanning calorimetry and paclitaxel release was measured using HPLC methods. The PCL- and PDLLA-based diblock copolymers encapsulated at high efficiency and were miscible in PLGA microspheres (30-120m microm size range). The burst phase of paclitaxel release was increased up to 20-fold by the inclusion of diblock copolymers in PLGA microspheres. Approximately 10% of the more hydrophobic PCL-based copolymers released from the microspheres in a short burst over 3 days followed by very slow release over the following 10 weeks. Only the PDLLA-based copolymer released from the PLGA microspheres in a controlled manner over 10 weeks. All microspheres containing PEG were found to have more hydrophilic surfaces (as measured by contact angle) with improved biocompatibility (reduced neutrophil activation) compared to PLGA only microspheres. These results indicate that low molecular weight polyester-based diblock copolymers may be effectively encapsulated in PLGA microspheres to increase paclitaxel release (probably through a micellization process) and improve biocompatibility.
Collapse
Affiliation(s)
- John K Jackson
- Faculty of Pharmaceutical Sciences, 2146 East Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|