1
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Ming P, Rao P, Wu T, Yang J, Lu S, Yang B, Xiao J, Tao G. Biomimetic Design and Fabrication of Sericin-Hydroxyapatite Based Membranes With Osteogenic Activity for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:899293. [PMID: 35662836 PMCID: PMC9160433 DOI: 10.3389/fbioe.2022.899293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
The guided tissue regeneration (GTR) technique is a promising treatment for periodontal tissue defects. GTR membranes build a mechanical barrier to control the ingrowth of the gingival epithelium and provide appropriate space for the regeneration of periodontal tissues, particularly alveolar bone. However, the existing GTR membranes only serve as barriers and lack the biological activity to induce alveolar bone regeneration. In this study, sericin-hydroxyapatite (Ser-HAP) composite nanomaterials were fabricated using a biomimetic mineralization method with sericin as an organic template. The mineralized Ser-HAP showed excellent biocompatibility and promoted the osteogenic differentiation of human periodontal membrane stem cells (hPDLSCs). Ser-HAP was combined with PVA using the freeze/thaw method to form PVA/Ser-HAP membranes. Further studies confirmed that PVA/Ser-HAP membranes do not affect the viability of hPDLSCs. Moreover, alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and RT-qPCR detection revealed that PVA/Ser-HAP membranes induce the osteogenic differentiation of hPDLSCs by activating the expression of osteoblast-related genes, including ALP, Runx2, OCN, and OPN. The unique GTR membrane based on Ser-HAP induces the differentiation of hPDLSCs into osteoblasts without additional inducers, demonstrating the excellent potential for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Piaoye Ming
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianli Wu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Shi Lu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Binbin Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jingang Xiao, ; Gang Tao,
| | - Gang Tao
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jingang Xiao, ; Gang Tao,
| |
Collapse
|
3
|
Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals (Basel) 2021; 14:ph14070615. [PMID: 34206843 PMCID: PMC8308723 DOI: 10.3390/ph14070615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone defects and periodontal disease are pathological conditions that may become neglected diseases if not treated properly. Hydroxyapatite (HA), along with tricalcium phosphate and bioglass ceramic, is a biomaterial widely applied to orthopedic and dental uses. The in vivo performance of HA is determined by the interaction between HA particles with bone cells, particularly the bone mineralizing cells osteoblasts. It has been reported that HA-induced osteoblastic differentiation by increasing the expression of osteogenic transcription factors. However, the pathway involved and the events that occur in the cell membrane have not been well understood and remain controversial. Advances in gene editing and the discovery of pharmacologic inhibitors assist researchers to better understand osteoblastic differentiation. This review summarizes the involvement of extracellular signal-regulated kinase (ERK), p38, Wnt, and bone morphogenetic protein 2 (BMP2) in osteoblastic cellular regulation induced by HA. These advances enhance the current understanding of the molecular mechanism of HA as a biomaterial. Moreover, they provide a better strategy for the design of HA to be utilized in bone engineering.
Collapse
|
4
|
Hiragami F, Motoda H, Takezawa T, Takabayashi C, Inoue S, Wakatake Y, Kano Y. Heat shock-induced three-dimensional-like proliferation of normal human fibroblasts mediated by pressed silk. Int J Mol Sci 2009; 10:4963-4976. [PMID: 20087471 PMCID: PMC2808017 DOI: 10.3390/ijms10114963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine the optimal heat treatment conditions for enhancement of pressed silk-mediated 3D-like proliferation of normal human dermal fibroblasts, as well as to determine the responses to heat shock of cells and intracellular signaling pathways. The beginning of 3D-like pattern formation of cells was observed in the second week after the start of the experiment. The mean rates of beginning of 3D-like pattern formation by cells heat-treated at 40 ºC and 43 ºC for 10 min were significantly higher (3.2- and 8.6-fold, respectively) than that of untreated cells. We found that apoptosis had occurred in 7.5% and 50.0% of the cells at one week after heat treatment for 10 min at 43 ºC and 45 ºC, respectively. Western blot analysis demonstrated that phosphorylation of p38 MAPK and that of Hsp27 were markedly increased by heat treatment at 43 ºC for 10 min. The results of an experiment using a p38 MAPK inhibitor and Hsp27 inhibitor suggest that activation of p38 MAPK by heat shock is associated with 3D-like cell proliferation and that Hsp27 contributes to the inhibition of apoptosis. The results of this study should be useful for further studies aimed at elucidation of the physiologic mechanisms underlying thermotherapy.
Collapse
Affiliation(s)
- Fukumi Hiragami
- Department of Physical Therapy, School of Health Science, Kibi International University, 8 Iga-machi Takahashi City, Okayama 716-8505, Japan; E-Mails:
(H.M.);
(S.I.);
(Y.W.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +81-866-22-9160; Fax: +81-866-22-9160
| | - Hirotoshi Motoda
- Department of Physical Therapy, School of Health Science, Kibi International University, 8 Iga-machi Takahashi City, Okayama 716-8505, Japan; E-Mails:
(H.M.);
(S.I.);
(Y.W.)
| | - Toshiaki Takezawa
- Laboratory of Animal Cell Biology, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan; E-Mail:
| | - Chiyuki Takabayashi
- Laboratory of New Silk Materials, National Institute of Agrobiological Sciences, Gouda 1-4-8, Okaya, Nagano 394-0021, Japan; E-Mail:
| | - Shigeki Inoue
- Department of Physical Therapy, School of Health Science, Kibi International University, 8 Iga-machi Takahashi City, Okayama 716-8505, Japan; E-Mails:
(H.M.);
(S.I.);
(Y.W.)
| | - Yuji Wakatake
- Department of Physical Therapy, School of Health Science, Kibi International University, 8 Iga-machi Takahashi City, Okayama 716-8505, Japan; E-Mails:
(H.M.);
(S.I.);
(Y.W.)
| | - Yoshio Kano
- Department of Occupational Therapy, School of Health Science, Kibi International University, 8 Iga-machi Takahashi City, Okayama 716-8505, Japan; E-Mail:
| |
Collapse
|