1
|
Ishihara K, Shi X, Fukazawa K, Yamaoka T, Yao G, Wu JY. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS APPLIED BIO MATERIALS 2023; 6:3600-3616. [PMID: 37616500 PMCID: PMC10521029 DOI: 10.1021/acsabm.3c00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contact lenses are one of the most successful applications of biomaterials. The chemical structure of the polymers used in contact lenses plays an important role in determining the function of contact lenses. Different types of contact lenses have been developed based on the chemical structure of polymers. When designing contact lenses, materials scientists consider factors such as mechanical properties, processing properties, optical properties, histocompatibility, and antifouling properties, to ensure long-term wear with minimal discomfort. Advances in contact lens materials have addressed traditional issues such as oxygen permeability and biocompatibility, improving overall comfort, and duration of use. For example, silicone hydrogel contact lenses with high oxygen permeability were developed to extend the duration of use. In addition, controlling the surface properties of contact lenses in direct contact with the cornea tissue through surface polymer modification mimics the surface morphology of corneal tissue while maintaining the essential properties of the contact lens, a significant improvement for long-term use and reuse of contact lenses. This review presents the material science elements required for advanced contact lenses of the future and summarizes the chemical methods for achieving these goals.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xinfeng Shi
- Alcon
Research, LLC, Fort Worth, Texas 76134, United States
| | - Kyoko Fukazawa
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- National
Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - George Yao
- Alcon
Research, LLC, Duluth, Georgia 30097, United States
| | | |
Collapse
|
2
|
Marmo AC, Grunlan MA. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett 2023; 12:172-182. [PMID: 36669481 PMCID: PMC10848296 DOI: 10.1021/acsmacrolett.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Silicones have a long history of use in biomedical devices, with unique properties stemming from the siloxane (Si-O-Si) backbone that feature a high degree of flexibility and chemical stability. However, surface, rheological, mechanical, and electrical properties of silicones can limit their utility. Successful modification of silicones to address these limitations could lead to superior and new biomedical devices. Toward improving such properties, recent additive strategies have been leveraged to modify biomedical silicones and are highlighted herein.
Collapse
Affiliation(s)
- Alec C. Marmo
- Department
of Materials Science and Engineering Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science and Engineering,
Department of Chemistry Texas A&M University, College Station, Texas 77843-3003, United
States
| |
Collapse
|
3
|
Tabbasum K, Reddy DS, Singh V, Subasri R, Garg P. Sol-Gel Nanocomposite Coatings for Preventing Biofilm Formation on Contact Lens Cases. Transl Vis Sci Technol 2021; 10:4. [PMID: 33505771 PMCID: PMC7794269 DOI: 10.1167/tvst.10.1.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/08/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose To evaluate the efficacy of a nanosilver-based sol–gel coating in preventing biofilm formation on contact lens cases. Methods An organic–inorganic hybrid silica–zirconia sol formulation with immobilized silver nanoparticles was deposited on contact lens case coupons. The coated and uncoated coupons were subjected to biofilm formation to Gram-negative and Gram-positive keratitis isolates and ATCC strains using a standard protocol. The biofilms were evaluated using crystal violet, MTT assay, and scanning electron microscope (SEM) examination. The duration of efficacy of the coating was evaluated by exposing the coated and uncoated coupons to a multipurpose lens cleaning solution for various durations up to 30 days and comparing their biofilm characteristics. The cytotoxicity of the coated surface was assessed using cell culture studies. Results Cross-hatch tests and SEM confirmed the presence of a uniform, well-adhered coating on the surface. The coating resulted in a nearly 95% reduction in biofilm formation of the tested bacteria and was effective despite exposures of up to 30 days to a multipurpose lens cleaning solution. The coating did not exhibit cytotoxicity to human corneal epithelial cells. Conclusions The silver nanoparticle-based coating exhibits a good antibiofilm property for both Gram-negative bacilli and Gram-positive cocci and is promising for commercial use in preventing contact lens-related infections. Translational Relevance Biofilm formation on lens cases continues to be an important concern. The proposed coating will help reduce such formations, thus reducing the risk of lens-associated microbial keratitis.
Collapse
Affiliation(s)
- Khatija Tabbasum
- L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - D S Reddy
- Centre for Sol-Gel Coatings, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur, Hyderabad, Telangana, India
| | - Vivek Singh
- L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - R Subasri
- Centre for Sol-Gel Coatings, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur, Hyderabad, Telangana, India
| | - Prashant Garg
- L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Wang R, Xia J, Tang J, Liu D, Zhu S, Wen S, Lin Q. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther 2021; 37:172-180. [PMID: 33497580 DOI: 10.1089/jop.2020.0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: The intraocular lens (IOL) is a common, yet important, implantable device used in treatment of cataract in clinics. However, the unexpected adhesion of postoperative residual lens epithelial cells (LECs) often causes serious complications, such as posterior capsular opacification (PCO), which lead to vision loss again. In this investigation, a poly(sulfobetaine methacrylate) (PSBMA) brush coating was fabricated on an IOL to generate a hydrophilic surface coating on the IOL for enhanced cell adhesion resistance so as to decrease PCO incidence. Methods: The PSBMA brush coating on the IOL surface was fabricated using surface-initiated reversible addition-fragmentation chain transfer polymerization. X-ray photoelectron spectroscopy (XPS) was used to demonstrate the surface coating preparation. The water contact angle (WCA) measurement was used to test surface hydrophilicity. In vitro LEC culture was use to evaluate the cell behavior on the IOL material surfaces, with or without PSBMA coating modification. Finally, animal cataract surgeries were carried out to evaluate in vivo biocompatibilities and anti-PCO effects. Results: The XPS and WCA measurements illustrate successful surface modification and good surface hydrophilicity. The in vitro cell culture results show that the hydrophilic PSBMA polymer brush coating evidently decreases adhesion and proliferation of LECs. Results of the in vivo cataract surgery with intraocular implantation show that PSBMA modification on the IOL surface does not induce side effects in nearby tissues, whereas posterior capsular hyperplasia can be evidently reduced. Conclusion: The PSBMA brush surface-modified IOL has good in vivo biocompatibility and it can effectively reduce the incidence of postoperative PCO.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Xia
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junmei Tang
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shimin Wen
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Huang H, Zhu S, Liu D, Wen S, Lin Q. Antiproliferative drug-loaded multi-functionalized intraocular lens for reducing posterior capsular opacification. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:735-748. [PMID: 33332253 DOI: 10.1080/09205063.2020.1865691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Posterior capsule opacification (PCO) is one of the most frequent complications in cataract surgery and likely to cause the second loss of vision. Proliferation and migration of postoperative remnants of lens epithelial cells (LECs) on the implanted intraocular lens (IOL) are the leading causes of PCO. Antiproliferative drugs can be an effective solution but also possess some problems including sudden release and accompanying adverse effects to surrounding normal tissues, which greatly limit the clinical trials. In this study, an antiproliferative drug Paclitaxel (Pac) -sustained released hyaluronic acid (HA) and chitosan (CHI) multilayer modified IOL with postoperatively long-term PCO prevention was fabricated via layer by layer (LbL) technique. Quartz crystal microbalance with dissipation monitoring (QCM-D) result shows that HA-Pac/CHI multilayer is modified onto IOL material via LbL technique successfully. The HA-Pac/CHI multilayer coating greatly improves the hydrophilicity of the IOL material surfaces without change the transmittance significantly, whereas the proliferation of LECs is distinctly reduced on the HA-Pac/CHI multilayer-modified surfaces. The drug release in vitro reveals that the multilayer modified IOL material is stable under physiological condition and has good sustained drug release property. All these results demonstrate that HA-Pac/CHI multilayer modified IOL material can effectively inhibit LECs proliferation which provides a novel approach for reducing of PCO incidence in clinical.
Collapse
Affiliation(s)
- Huiying Huang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqing Zhu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shimin Wen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Liu Y, Song C, Wang Z, Wang Y, Zhu D, Gao C. A type of silicones strengthened by vinylethylene carbonate functional polyorganosilsesquioxane and crosslinked by primary ammonia and cyclic carbonate reaction: Experimental and MD simulation studies. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Choi G, Song Y, Lim H, Lee SH, Lee HK, Lee E, Choi BG, Lee JJ, Im SG, Lee KG. Antibacterial Nanopillar Array for an Implantable Intraocular Lens. Adv Healthc Mater 2020; 9:e2000447. [PMID: 32743966 DOI: 10.1002/adhm.202000447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/20/2020] [Indexed: 01/30/2023]
Abstract
Postsurgical intraocular lens (IOL) infection caused by pathogenic bacteria can result in blindness and often requires a secondary operation to replace the contaminated lens. The incorporation of an antibacterial property onto the IOL surface can prevent bacterial infection and postoperative endophthalmitis. This study describes a polymeric nanopillar array (NPA) integrated onto an IOL, which captures and eradicates the bacteria by rupturing the bacterial membrane. This is accomplished by changing the behavior of the elastic nanopillars using bending, restoration, and antibacterial surface modification. The combination of the polymer coating and NPA dimensions can decrease the adhesivity of corneal endothelial cells and posterior capsule opacification without causing cytotoxicity. An ionic antibacterial polymer layer is introduced onto an NPA using an initiated chemical vapor deposition process. This improves bacterial membrane rupture efficiency by increasing the interactions between the bacteria and nanopillars and damages the bacterial membrane using quaternary ammonium compounds. The newly developed ionic polymer-coated NPA exceeds 99% antibacterial efficiency against Staphylococcus aureus, which is achieved through topological and physicochemical surface modification. Thus, this paper provides a novel, efficient strategy to prevent postoperative complications related to bacteria contamination of IOL after cataract surgery.
Collapse
Affiliation(s)
- Goro Choi
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyungjun Lim
- Nano‐Convergence Mechanical Systems Research Division Korea Institute of Machinery and Materials Daejeon 34103 Republic of Korea
| | - Song Ha Lee
- Division of Nano‐Bio Sensor/Chip Development National NanoFab Center Daejeon 34141 Republic of Korea
| | - Hyung Keun Lee
- Institute of Vision Research Department of Ophthalmology Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering Kangwon National University Samcheok 25913 Republic of Korea
| | - Jae Jong Lee
- Nano‐Convergence Mechanical Systems Research Division Korea Institute of Machinery and Materials Daejeon 34103 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Kyoung G. Lee
- Division of Nano‐Bio Sensor/Chip Development National NanoFab Center Daejeon 34141 Republic of Korea
| |
Collapse
|
9
|
Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers. Macromol Rapid Commun 2020; 41:e2000175. [DOI: 10.1002/marc.202000175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/12/2020] [Indexed: 12/19/2022]
|
10
|
Han Y, Tang J, Liu S, Zhao X, Wang R, Xia J, Qin C, Chen H, Lin Q. Cellular Microenvironment-Sensitive Drug Eluting Coating on Intraocular Lens for Enhanced Posterior Capsular Opacification Prevention and in Vivo Biocompatibility. ACS APPLIED BIO MATERIALS 2020; 3:3582-3593. [PMID: 35025228 DOI: 10.1021/acsabm.0c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuemei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Junmei Tang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Sihao Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xia Zhao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiayi Xia
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
11
|
Xiao A, Dhand C, Leung CM, Beuerman RW, Ramakrishna S, Lakshminarayanan R. Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B 2018; 6:2171-2186. [PMID: 32254560 DOI: 10.1039/c7tb03136j] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contact lens wear is a primary risk factor for developing ocular complications, such as contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU) and microbial keratitis (MK). Infections occur due to microbial contamination of contact lenses, lens cases and lens care solution, which are exacerbated by extended lens wear and unsanitary lens care practices. The development of microbial biofilms inside lens cases is an additional complication, as the developed biofilms are resistant to conventional lens cleaning solutions. Ocular infections, particularly in the case of MK, can lead to visual impairment or even blindness, so there is a pressing need for the development of antimicrobial contact lenses and cases. Additionally, with the increasing use of bandage contact lenses and contact lenses as drug depots and with the development of smart contact lenses, contact lens hygiene becomes a therapeutically important issue. In this review, we attempt to compile and summarize various chemical strategies for developing antimicrobial contact lenses and lens cases by using silver, free-radical producing agents, antimicrobial peptides or by employing passive surface modification approaches. We also evaluated the advantages and disadvantages of each system and tried to provide input to future directions. Finally, we summarize the developing technologies of therapeutic contact lenses to shed light on the future of contact lens applications.
Collapse
Affiliation(s)
- Amy Xiao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jin YJ, Kang S, Park P, Choi D, Kim DW, Jung D, Koh J, Jeon J, Lee M, Ham J, Seo JH, Jin HR, Lee Y. Anti-inflammatory and Antibacterial Effects of Covalently Attached Biomembrane-Mimic Polymer Grafts on Gore-Tex Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19161-19175. [PMID: 28557438 DOI: 10.1021/acsami.7b02696] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Expanded polytetrafluoroethylene (ePTFE), also known as Gore-Tex, is widely used as an implantable biomaterial in biomedical applications because of its favorable mechanical properties and biochemical inertness. However, infection and inflammation are two major complications with ePTFE implantations, because pathogenic bacteria can inhabit the microsized pores, without clearance by host immune cells, and the limited biocompatibility can induce foreign body reactions. To minimize these complications, we covalently grafted a biomembrane-mimic polymer, poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC), by partial defluorination followed by UV-induced polymerization with cross-linkers on the ePTFE surface. PMPC grafting greatly reduced serum protein adsorption as well as fibroblast adhesion on the ePTFE surface. Moreover, the PMPC-grafted ePTFE surface exhibited a dramatic inhibition of the adhesion and growth of Staphylococcus aureus, a typical pathogenic bacterium in ePTFE implants, in the porous network. On the basis of an analysis of immune cells and inflammation-related factors, i.e., transforming growth factor-β (TGF-β) and myeloperoxidase (MPO), we confirmed that inflammation was efficiently alleviated in tissues around PMPC-grafted ePTFE plates implanted in the backs of rats. Covalent PMPC may be an effective strategy for promoting anti-inflammatory and antibacterial functions in ePTFE implants and to reduce side effects in biomedical applications of ePTFE.
Collapse
Affiliation(s)
- Young Ju Jin
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Pona Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Dongkil Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Dae Woo Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Dongwook Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine , 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea
| | - Joohee Jeon
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Myoungjin Lee
- Department of Materials Science and Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Jiyeon Ham
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hong-Ryul Jin
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center , 5 Gil 20, Boramae-ro, Dongjak-Gu, Seoul 156-707, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
| |
Collapse
|
13
|
Huang X, Luo C, Lin L, Zhang L, Li H, Yao K, Xu Z. UV-assisted treatment on hydrophobic acrylic IOLs anterior surface with methacryloyloxyethyl phosphorylcholine: Reducing inflammation and maintaining low posterior capsular opacification properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1289-1298. [DOI: 10.1016/j.msec.2017.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/29/2017] [Accepted: 03/03/2017] [Indexed: 01/05/2023]
|
14
|
Rufin MA, Ngo BKD, Barry ME, Page VM, Hawkins ML, Stafslien SJ, Grunlan MA. Antifouling silicones based on surface-modifying additive amphiphiles. GREEN MATERIALS 2017; 5:4-13. [PMID: 31673356 PMCID: PMC6822677 DOI: 10.1680/jgrma.16.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface modifying additives (SMAs), which may be readily blended into silicones to improve anti-fouling behavior, must have excellent surface migration potential and must not leach into the aqueous environment. In this work, we evaluated the efficacy of a series of poly(ethylene oxide) (PEO)-based SMA amphiphiles which varied in terms of crosslinkability, siloxane tether length (m) and diblock versus triblock architectures. Specifically, crosslinkable, diblock PEO-silane amphiphiles with two oligodimethylsiloxane (ODMS) tether lengths [(EtO)3Si-(CH2)3-ODMS m -PEO8, m = 13 and 30] were compared to analogous non-crosslinkable, diblock (H-Si-ODMS m -PEO8) and triblock (PEO8-ODMS m -PEO8) SMAs. Prior to water conditioning, while all modified silicone coatings exhibited a high degree of water-driven surface restructuring, that prepared with the non-crosslinkable diblock SMA (m = 13) was the most hydrophilic. After conditioning, all modified silicone coatings were similarly hydrophilic and remained highly protein resistant, with the exception of PEO8-ODMS 30 -PEO8. Notably, despite twice the PEO content, triblock SMAs were not superior to diblock SMAs. For diblock SMAs, it was shown that water uptake and leaching were also similar whether or not the SMA was crosslinkable.
Collapse
Affiliation(s)
- Marc A Rufin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikayla E Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Vanessa M Page
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Melissa L Hawkins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Shane J Stafslien
- Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA, 5030 Emerging Technologies Building, College Station, TX 77843-3120
| |
Collapse
|
15
|
Tan X, Zhan J, Zhu Y, Cao J, Wang L, Liu S, Wang Y, Liu Z, Qin Y, Wu M, Liu Y, Ren L. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer. Sci Rep 2017; 7:40462. [PMID: 28084469 PMCID: PMC5234006 DOI: 10.1038/srep40462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage.
Collapse
Affiliation(s)
- Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Jiezhao Zhan
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Ji Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China.,EYEGOOD Medicals Co., Ltd, Zhuhai, Guangdong, 519085, China
| | - Lin Wang
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Sa Liu
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yingjun Wang
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yingyan Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University 54 South Xianlie Rd, Guangzhou, China
| | - Mingxing Wu
- Department of Cataract, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Li Ren
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| |
Collapse
|
16
|
Han Y, Xu X, Tang J, Shen C, Lin Q, Chen H. Bottom-up fabrication of zwitterionic polymer brushes on intraocular lens for improved biocompatibility. Int J Nanomedicine 2016; 12:127-135. [PMID: 28053528 PMCID: PMC5191625 DOI: 10.2147/ijn.s107491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intraocular lens (IOL) is an efficient implantable device commonly used for treating cataracts. However, bioadhesion of bacteria or residual lens epithelial cells on the IOL surface after surgery causes postoperative complications, such as endophthalmitis or posterior capsular opacification, and leads to loss of sight again. In the present study, zwitterionic polymer brushes were fabricated on the IOL surface via bottom-up grafting procedure. The attenuated total reflection-Fourier transform infrared and contact angle measurements indicated successful surface modification, as well as excellent hydrophilicity. The coating of hydrophilic zwitterionic polymer effectively decreased the bioadhesion of lens epithelial cells or bacteria. In vivo intraocular implantation results showed good in vivo biocompatibility of zwitterionic IOL and its effectiveness against postoperative complications.
Collapse
Affiliation(s)
- Yuemei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
| | - Xu Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
| | - Junmei Tang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
| | - Chenghui Shen
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Quankui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China
| |
Collapse
|
17
|
Shaik SH, Donempudi S, Tammishetti S, Rao Garikapati K, Pal Bhadra M. Interpenetrating photopolymers for intraocular lens application. J Appl Polym Sci 2016. [DOI: 10.1002/app.44496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Syed Hussain Shaik
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Shekharam Tammishetti
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Koteswara Rao Garikapati
- Centre for Chemical Biology, CSIR- Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR- Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| |
Collapse
|
18
|
Xu X, Tang JM, Han YM, Wang W, Chen H, Lin QK. Surface PEGylation of intraocular lens for PCO prevention: An in vivo evaluation. J Biomater Appl 2016; 31:68-76. [PMID: 26980548 DOI: 10.1177/0885328216638547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Posterior capsular opacification (PCO) is a common complication in cataract surgery. The development of PCO is attributed to the combination of adhesion, migration, proliferation, and transdifferentiation of the residual lens epithelial cells (LEC) onto the interface of intraocular lens (IOL) material and lens posterior, in which the initial adhesion is the beginning step and plays important roles. In the present study, hydrophilic polyethylene glycol (PEG) was immobilized onto IOL surface via plasma-aided chemical grafting procedure. The attenuated total reflection - Fourier transform infrared (ATR-FTIR) and contact angle (CA) - measurements indicate the successful surface PEGylation, as well as the excellent hydrophilicity of the surfaces. Compared with pristine IOL, the PEGylation does not influent its optical property, whereas the initial adhesion of LEC is greatly inhibited. In vivo ocular implantation results show that the PEGylated IOL presents good in vivo biocompatibility, and can effectively prevent the PCO development.
Collapse
Affiliation(s)
- Xu Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun-Mei Tang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue-Mei Han
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Quan-Kui Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids Surf B Biointerfaces 2015; 136:735-43. [DOI: 10.1016/j.colsurfb.2015.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
|
20
|
Rufin MA, Gruetzner JA, Hurley MJ, Hawkins ML, Raymond ES, Raymond JE, Grunlan MA. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length. J Mater Chem B 2015; 3:2816-2825. [PMID: 26339488 PMCID: PMC4554761 DOI: 10.1039/c4tb02042a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide) n -OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogues (n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.
Collapse
Affiliation(s)
- M. A. Rufin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - J. A. Gruetzner
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - M. J. Hurley
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - M. L. Hawkins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| | - E. S. Raymond
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, College Station, TX 77843-3120
| | - J. E. Raymond
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3120
| | - M. A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3120
| |
Collapse
|
21
|
Lin Q, Xu X, Wang B, Shen C, Tang J, Han Y, Chen H. Hydrated polysaccharide multilayer as an intraocular lens surface coating for biocompatibility improvements. J Mater Chem B 2015; 3:3695-3703. [PMID: 32262844 DOI: 10.1039/c5tb00111k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A swollen polysaccharide multilayer was coated on an IOL to inhibit LEC adhesion and proliferation, thus decreasing PCO incidence after implantation.
Collapse
Affiliation(s)
- Quankui Lin
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Xu Xu
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Chenghui Shen
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou
- China
| | - Junmei Tang
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Yuemei Han
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| | - Hao Chen
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325027
- China
| |
Collapse
|
22
|
Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf B Biointerfaces 2014; 123:986-94. [DOI: 10.1016/j.colsurfb.2014.10.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/03/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
23
|
Bagheri ZS, Giles E, El Sawi I, Amleh A, Schemitsch EH, Zdero R, Bougherara H. Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:435-42. [PMID: 25492008 DOI: 10.1016/j.msec.2014.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/11/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
This study is part of an ongoing program to develop a new CF/Flax/Epoxy bone fracture plate to be used in orthopedic trauma applications. The purpose was to determine this new plate's in-vitro effects on the level of bone formation genes, as well as cell viability in comparison with a medical grade metal (i.e. stainless steel) commonly employed for fabrication of bone plates (positive control). Cytotoxicity and osteogenesis induced by wear debris of the material were assessed using Methyl Tetrazolium (MTT) assay and reverse transcription polymerase chain reaction (RT-PCR) for 3 osteogenesis specific gene markers, including bone morphogenetic proteins (BMP2), runt-related transcription factor 2 (Runx2) and Osterix. Moreover, the Flax/Epoxy and CF/Epoxy composites were examined separately for their wettability properties by water absorption and contact angle (CA) tests using the sessile drop technique. The MTT results for indirect and direct assays indicated that the CF/Flax/Epoxy composite material showed comparable cell viability with no cytotoxicity at all incubation times to that of the metal group (p≥0.05). Osteogenesis test results showed that the expression level of Runx2 marker induced by CF/Flax/Epoxy were significantly higher than those induced by metal after 48 h (p=0.57). Also, the Flax/Epoxy composite revealed a hydrophilic character (CA=68.07°±2.05°) and absorbed more water up to 17.2% compared to CF/Epoxy, which reached 1.25% due to its hydrophobic character (CA=93.22°±1.95°) (p<0.001). Therefore, the new CF/Flax/Epoxy may be a potential candidate for medical applications as a bone fracture plate, as it showed similar cell viability with no negative effect on gene expression levels responsible for bone formation compared to medical grade stainless steel.
Collapse
Affiliation(s)
- Zahra S Bagheri
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada; Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Erica Giles
- Musculoskeletal Research Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada
| | - Ihab El Sawi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada
| | - Asma Amleh
- Department of Biology, The American University in Cairo (AUC), New Cairo 11835, Egypt
| | - Emil H Schemitsch
- Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Musculoskeletal Research Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Dept. of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S-1A8, Canada
| | - Radovan Zdero
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada; Martin Orthopaedic Biomechanics Lab, St. Michael's Hospital, Toronto, ON M5B-1W8, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B-2K3, Canada.
| |
Collapse
|
24
|
Yang Q, Wang L, Lin W, Ma G, Yuan J, Chen S. Development of nonfouling polypeptides with uniform alternating charges by polycondensation of the covalently bonded dimer of glutamic acid and lysine. J Mater Chem B 2013; 2:577-584. [PMID: 32261539 DOI: 10.1039/c3tb21333a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, nonfouling polypeptides with homogenous alternating charges were synthesized by polycondensation of the covalently bonded dimer of glutamic acid (E) and lysine (K) (EK dimer) with benzyloxycarbonyl (Z)-protected side chains. This facile method successfully solved the uniformity problem of nonfouling peptides caused by the copolymerization of two different monomers and enabled the incorporation of various terminal functional groups for future applications. The molecular weights (MWs) of the nonfouling peptides can be easily controlled by the ratio of the terminal group, lipoic acid, to the EK dimer. The nonfouling peptides can form self-assembling monolayers (SAMs) on a gold surface through two terminal thiol groups, which were characterized by attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and ellipsometry (ELL). The resistance to nonspecific protein adsorption, cell attachment and bacterial adhesion of these nonfouling peptide SAMs and the in vitro cytotoxicity and haemolytic activity of these peptides were also evaluated. The results show that the lowest relative protein adsorptions of antibody (anti-IgG) and fibrinogen (Fg) on the SAMs are 5.1 ± 1.6% and 7.3 ± 1.8%, respectively, determined by enzyme-linked immunosorbent assay (ELISA), where the protein adsorption on a tissue culture polystyrene (TCPS) surface was set to 100%. Almost no obvious cell attachment and bacterial adhesion were observed, and no cytotoxicity and no haemolytic activity in vitro were detected. With the advantages of biocompatibility, biodegradability and the abundance of moieties for ligand immobilization, these nonfouling peptides developed by the facile method can be used in a wide range of biomedical applications.
Collapse
Affiliation(s)
- Qinghua Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | | | | | | | | | | |
Collapse
|
25
|
Hao N, Wang YB, Zhang SP, Shi SQ, Nakashima K, Gong YK. Surface reconstruction and hemocompatibility improvement of a phosphorylcholine end-capped poly(butylene succinate) coating. J Biomed Mater Res A 2013; 102:2972-81. [DOI: 10.1002/jbm.a.34967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Ni Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Yan-Bing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Shi-Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | - Su-Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| | | | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education; Northwest University; Xi'an Shaanxi China
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi China
| |
Collapse
|
26
|
Chakrabarty A, Ganabathi K, Alexander JS, Hoekstra P, Martin J, Zylstra S. Does pelvic mesh treated with phosphorylcholine improve outcomes? An early experience. Eur J Obstet Gynecol Reprod Biol 2013; 167:230-4. [PMID: 23280282 DOI: 10.1016/j.ejogrb.2012.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Implantable devices treated with phosphorylcholine (PC) have been successfully used in cardiac, ophthalmic, and other applications. This surface modification has resulted in a reduction in the host inflammatory responses. This pilot study tested the safety and efficacy of PC treated polypropylene mesh grafts implanted for the treatment of pelvic organ prolapse. STUDY DESIGN Surgeons from five U.S. sites collected data on subjects implanted with Perigee IntePro Lite+PC. Pre-procedure data collected included demographics and prolapse severity. At follow-up, subjects were assessed for anatomical outcomes (success≤stage I POPQ or Baden Walker), symptomatic improvement, and complications, particularly mesh exposure. RESULTS A total of 40 subjects were enrolled with 80% (32/40) of them completing at least 5-7 months of follow-up. Mean patient age was 60 years (range 36-78 years) and the mean BMI was 28 (range 20-40). There were no cases of mesh exposure/extrusion or granuloma formation. The anatomical success rate was 100% at 5-7 months (32/32). CONCLUSIONS This is the first publication on pelvic mesh treated with PC. There were no adverse events attributed to this surface modification. However, as the numbers are small, the results are not statistically significant. PC surface modification of pelvic mesh shows promise in its application for the reduction of mesh related complications.
Collapse
|
27
|
Huang XD, Li HY, Lin L, Yao K. Reduced Silicone Oil Adherence to Silicone Intraocular Lens by Surface Modification with 2-Methacryloyloxyethyl Phosphoryl-Choline. Curr Eye Res 2012; 38:91-6. [DOI: 10.3109/02713683.2012.704477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
UV-curing of simultaneous interpenetrating network silicone hydrogels with hydrophilic surface. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0757-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Hawkins ML, Grunlan MA. The protein resistance of silicones prepared with a PEO-silane amphiphile. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32322b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wang JJ, Liu F. Imparting antifouling properties of silicone hydrogels by grafting poly(ethylene glycol) methyl ether acrylate initiated by UV light. J Appl Polym Sci 2011. [DOI: 10.1002/app.35687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Kao EC, McCanna DJ, Jones LW. Utilization of in vitro methods to determine the biocompatibility of intraocular lens materials. Toxicol In Vitro 2011; 25:1906-11. [DOI: 10.1016/j.tiv.2011.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
|
32
|
Wang JJ, Liu F. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone hydrogels for reducing protein adsorption. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2651-2657. [PMID: 22020548 DOI: 10.1007/s10856-011-4452-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The biomimetic synthetic methacrylate monomer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has been widely used to improve the surface property of biomaterials. In the current report, both hydrophilic and antifouling surfaces were prepared on silicone hydrogels with MPC grafted by UV-induced free radical polymerization. The MPC-grafted silicone hydrogels were characterized by graft yield and static water contact angle (SCA) measurements. According to the results, the graft yield reached a maximum at 5 min of UV exposure time and 8 wt% MPC concentration. The modified silicone hydrogels possessed hydrophilic surfaces with the lowest water contact angle of 20º. The oxygen permeability of the MPC-grafted silicone hydrogels was as high as the unmodified silicone hydrogel. The mechanical property of silicone hydrogels was maintained at about 95% of the tensile strength and elastic modulus after the MPC grafting. The results of the in vitro single protein adsorption on the MPC-grafted silicone hydrogels were in agreement with the SCA measurements. The smaller the water contact angle, the greater was the protein repelling ability. The MPC-grafted silicone hydrogel is expected to be a novel biomaterial which possesses excellent surface hydrophilicity, antifouling property, oxygen permeability and mechanical property.
Collapse
Affiliation(s)
- Jing Jing Wang
- Department of Polymer Materials and Engineering, School of Material Engineering, Yancheng Institute of Technology, Yancheng, People's Republic of China.
| | | |
Collapse
|
33
|
Yokota M, Shimoyama N, Fujisawa K, Nakamura M, Ajiro H, Akashi M. Novel Method for Surface Modification of Silicone-containing Hydrogel Using Addition Reaction. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Wang J, Li X. Enhancing protein resistance of hydrogels based on poly(2-hydroxyethyl methacrylate) and poly(2-methacryloyloxyethyl phosphorylcholine) with interpenetrating network structure. J Appl Polym Sci 2011. [DOI: 10.1002/app.33960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Wang J, Li X. Interpenetrating polymer network hydrogels based on silicone and poly(2-methacryloyloxyethyl phosphorylcholine). POLYM ADVAN TECHNOL 2010. [DOI: 10.1002/pat.1726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
|
37
|
Sun FQ, Li XS, Cao PT, Xu JK. Enhancing hydrophilicity and protein resistance of silicone hydrogels by plasma induced grafting with hydrophilic polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2010. [DOI: 10.1007/s10118-010-9082-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface. J Cataract Refract Surg 2010; 36:290-8. [DOI: 10.1016/j.jcrs.2009.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022]
|
39
|
Surface modification of acrylate intraocular lenses with dielectric barrier discharge plasma at atmospheric pressure. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Lu PL, Lai JY, Ma DHK, Hsiue GH. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:1-18. [PMID: 18177550 DOI: 10.1163/156856208783227695] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It was reported that cell-adhesive gelatin discs have been successfully used as delivery vehicles for intraocular grafting of bioengineered corneal endothelial cell sheets. Development of alternative biomaterials to bovine-based gelatin vehicles can potentially eliminate the risk of bovine spongiform encephalopathy. In the present work, to investigate whether it was appropriate for use as cell sheet delivery vehicles, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) cross-linked hyaluronic acid (HA) hydrogels were studied by determinations of morphological characteristic, mechanical and thermal property, water content, in vitro degradability and cytocompatibility. Glutaraldehyde (GTA) cross-linked HA samples were used for comparison. It was found that HA discs after cross-linking significantly increased its tensile stress but reduced its tensile strain, water uptake and enzymatic degradability. The results of differential scanning calorimetry demonstrated that cross-linking could lead to the alteration of polymer structure. In addition, the EDC-cross-linked HA discs had a smoother surface structure, a faster degradation rate and a relatively lower cytotoxicity as compared to the GTA cross-linked counterparts. It is concluded that EDC can be successfully applied for HA cross-linking to fabricate structurally stable, mechanically reinforced, readily deformable, transparent and cytocompatible HA hydrogel discs with the potential to be applied as delivery vehicles for corneal endothelial cell therapy.
Collapse
Affiliation(s)
- Pei-Lin Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To provide an update on currently available materials used in the manufacture of intraocular lenses, as well as new materials under development, especially with regard to their uveal and capsular biocompatibility. RECENT FINDINGS The biocompatibility of intraocular lens materials should be assessed in terms of uveal biocompatibility, related to the inflammatory foreign-body reaction of the eye against the implant, as well as in terms of capsular biocompatibility, determined by the relationship of the intraocular lens with remaining lens epithelial cells within the capsular bag. This situation may result in different entities, e.g. anterior capsule opacification, interlenticular opacification (between piggyback intraocular lenses), posterior capsule opacification and lens epithelial cell ongrowth. Reports on intraocular lens opacification suggest that the potential to calcify should also be taken into consideration when evaluating the long-term biocompatibility of a new material. SUMMARY Intraocular lenses are being progressively implanted in much earlier stages of life (refractive lens exchange, pediatric implantation) and are expected to remain in the intraocular environment for many decades. Materials used in intraocular lens manufacture should, therefore, insure long-term uveal and capsular biocompatibility, as well as ultimate transparency after implantation.
Collapse
|
42
|
Huang XD, Yao K, Zhang H, Huang XJ, Xu ZK. Surface modification of silicone intraocular lens by 2-methacryloyloxyethyl phosphoryl-choline binding to reduce Staphylococcus epidermidis adherence. Clin Exp Ophthalmol 2007; 35:462-7. [PMID: 17651252 DOI: 10.1111/j.1442-9071.2007.01516.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To analyse the in vitro adherence of Staphylococcus epidermidis to the 2-methacryloyl oxyethyl phosphorylcholine (MPC)-modified silicone intraocular lens (IOL). METHODS The test IOLs were modified by using an air plasma treatment to bind MPC to the surface. The control IOLs were not modified. Chemical changes on the IOL surface were analysed by X-ray photoelectron spectroscopy (XPS) to confirm the covalent binding of MPC. IOL hydrophilicity was determined by measuring the water contact angle. Two different techniques, direct counting of viable adherent bacteria released by sonication, and scanning electron microscopy (SEM), were used to observe and compare the adherence of S. epidermidis to the IOLs after 1- and 18-h incubation. RESULTS XPS analysis confirmed that the test IOLs were surface-modified with MPC. The hydrophilicity of the IOLs was improved by surface modification, and the MPC-modified IOLs exhibited significantly reduced adhesion of S. epidermidis (P = 0.002) after an incubation period of 1 h. The SEM results showed that the MPC modification also suppressed the accumulation of bacteria and biofilm production after 18 h incubation. CONCLUSIONS MPC-modified hydrophilic silicone IOLs reduce bacterial adherence and colonization, and thus may help reduce the incidence of postoperative endophthalmitis.
Collapse
Affiliation(s)
- Xiao-Dan Huang
- Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
43
|
Iwasaki Y, Takamiya M, Iwata R, Yusa SI, Akiyoshi K. Surface modification with well-defined biocompatible triblock copolymers. Colloids Surf B Biointerfaces 2007; 57:226-36. [PMID: 17360164 DOI: 10.1016/j.colsurfb.2007.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 01/08/2007] [Accepted: 02/03/2007] [Indexed: 11/15/2022]
Abstract
To improve interfacial phenomena of poly(dimethylsiloxane) (PDMS) as biomaterials, well-defined triblock copolymers were prepared as coating materials by reversible addition-fragmentation chain transfer (RAFT) controlled polymerization. Hydroxy-terminated poly(vinylmethylsiloxane-co-dimethylsiloxane) (HO-PV(l)D(m)MS-OH) was synthesized by ring-opening polymerization. The copolymerization ratio of vinylmethylsiloxane to dimethylsiloxane was 1/9. The molecular weight of HO-PV(l)D(m)MS-OH ranged from (1.43 to 4.44)x10(4), and their molecular weight distribution (M(w)/M(n)) as determined by size-exclusion chromatography equipped with multiangle laser light scattering (SEC-MALS) was 1.16. 4-Cyanopentanoic acid dithiobenzoate was reacted with HO-PV(l)D(m)MS-OH to obtain macromolecular chain transfer agents (macro-CTA). 2-Methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with macro-CTAs. The gel-permeation chromatography (GPC) chart of synthesized polymers was a single peak and M(w)/M(n) was relatively narrow (1.3-1.6). Then the poly(MPC) (PMPC)-PV(l)D(m)MS-PMPC triblock copolymers were synthesized. The molecular weight of PMPC in a triblock copolymer was easily controllable by changing the polymerization time or the composition of the macro-CTA to a monomer in the feed. The synthesized block copolymers were slightly soluble in water and extremely soluble in ethanol and 2-propanol. Surface modification was performed via hydrosilylation. The block copolymer was coated on the PDMS film whose surface was pretreated with poly(hydromethylsiloxane). The surface wettability and lubrication of the PDMS film were effectively improved by immobilization with the block copolymers. In addition, the number of adherent platelets from human platelet-rich plasma (PRP) was dramatically reduced by surface modification. Particularly, the triblock copolymer having a high composition ratio of MPC units to silicone units was effective in improving the surface properties of PDMS. By selective decomposition of the Si-H bond at the surface of the PDMS substrate by irradiation with UV light, the coating region of the triblock copolymer was easily controlled, resulting in the fabrication of micropatterns. On the surface, albumin adsorption was well manipulated.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Tokyo, Japan.
| | | | | | | | | |
Collapse
|