1
|
De Henau R, de Vries A, Rousseau D. Structure and mechanical properties of anisotropic agar gels obtained via unidirectional freezing. Food Res Int 2024; 191:114626. [PMID: 39059897 DOI: 10.1016/j.foodres.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024]
Abstract
The controllable formation of anisotropic gel structures is presently sought for the development of foods with novel textures. Here, we used unidirectional freezing to generate agar gels consisting of a honeycomb-like porous network of elongated and aligned pores. A custom-built Peltier system allowed for control of the freezing front velocity throughout the agar gels. A higher freezing velocity (10 µm/s) led to smaller pore sizes compared to the slower freezing velocity tested (2 µm/s). Texture analysis highlighted the significantly higher Young's modulus in the gels when compressed in the axial vs. radial direction - a direct consequence of the unidirectional freezing. The proton spin-spin relaxation time revealed greater water mobility in the unidirectionally frozen gel with larger pores. This study serves as the basis for the development of anisotropic hydrocolloid gels with a tunable microstructure and texture.
Collapse
Affiliation(s)
- Raphaël De Henau
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Auke de Vries
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada; New School Foods, Toronto, Canada
| | - Dérick Rousseau
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada.
| |
Collapse
|
2
|
Shirwaiker RA, Fisher MB, Anderson B, Schuchard KG, Warren PB, Maze B, Grondin P, Ligler FS, Pourdeyhimi B. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine. Tissue Eng Part C Methods 2020; 26:364-374. [PMID: 32552453 PMCID: PMC7398438 DOI: 10.1089/ten.tec.2020.0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Engineered scaffolds used to regenerate mammalian tissues should recapitulate the underlying fibrous architecture of native tissue to achieve comparable function. Current fibrous scaffold fabrication processes, such as electrospinning and three-dimensional (3D) printing, possess application-specific advantages, but they are limited either by achievable fiber sizes and pore resolution, processing efficiency, or architectural control in three dimensions. As such, a gap exists in efficiently producing clinically relevant, anatomically sized scaffolds comprising fibers in the 1-100 μm range that are highly organized. This study introduces a new high-throughput, additive fibrous scaffold fabrication process, designated in this study as 3D melt blowing (3DMB). The 3DMB system described in this study is modified from larger nonwovens manufacturing machinery to accommodate the lower volume, high-cost polymers used for tissue engineering and implantable biomedical devices and has a fiber collection component that uses adaptable robotics to create scaffolds with predetermined geometries. The fundamental process principles, system design, and key parameters are described, and two examples of the capabilities to create scaffolds for biomedical engineering applications are demonstrated. Impact statement Three-dimensional melt blowing (3DMB) is a new, high-throughput, additive manufacturing process to produce scaffolds composed of highly organized fibers in the anatomically relevant 1-100 μm range. Unlike conventional melt-blowing systems, the 3DMB process is configured for efficient use with the relatively expensive polymers necessary for biomedical applications, decreasing the required amounts of material for processing while achieving high throughputs compared with 3D printing or electrospinning. The 3DMB is demonstrated to make scaffolds composed of multiple fiber materials and organized into complex shapes, including those typical of human body parts.
Collapse
Affiliation(s)
- Rohan A. Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Bruce Anderson
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karl G. Schuchard
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul B. Warren
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Benoit Maze
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Pierre Grondin
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Horst M, Eberli D, Gobet R, Salemi S. Tissue Engineering in Pediatric Bladder Reconstruction-The Road to Success. Front Pediatr 2019; 7:91. [PMID: 30984717 PMCID: PMC6449422 DOI: 10.3389/fped.2019.00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Several congenital disorders can cause end stage bladder disease and possibly renal damage in children. The current gold standard therapy is enterocystoplasty, a bladder augmentation using an intestinal segment. However, the use of bowel tissue is associated with numerous complications such as metabolic disturbance, stone formation, urine leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder tissue would obviate the need for bowel for bladder reconstruction. Despite impressive progress in the field of bladder tissue engineering over the past decades, the successful transfer of the approach into clinical routine still represents a major challenge. In this review, we discuss major achievements and challenges in bladder tissue regeneration with a focus on different strategies to overcome the obstacles and to meet the need for living functional tissue replacements with a good growth potential and a long life span matching the pediatric population.
Collapse
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Daniel Eberli
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Rita Gobet
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
| | - Souzan Salemi
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| |
Collapse
|
4
|
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83:47-63. [PMID: 25477305 DOI: 10.1016/j.addr.2014.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sundar V Madihally
- Department of Chemical Engineering, 423 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Blake Palmer
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dominic Frimberger
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bradley P Kropp
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Podichetty JT, Madihally SV. Modeling of porous scaffold deformation induced by medium perfusion. J Biomed Mater Res B Appl Biomater 2013; 102:737-48. [DOI: 10.1002/jbm.b.33054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/30/2013] [Accepted: 09/22/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Jagdeep T. Podichetty
- School of Chemical Engineering; Oklahoma State University; Stillwater Oklahoma 74078
| | | |
Collapse
|
6
|
Son YJ, Yoon IS, Sung JH, Cho HJ, Chung SJ, Shim CK, Kim DD. Porous hyaluronic acid/sodium alginate composite scaffolds for human adipose-derived stem cells delivery. Int J Biol Macromol 2013; 61:175-81. [PMID: 23817101 DOI: 10.1016/j.ijbiomac.2013.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/29/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study is to evaluate the feasibility of hyaluronic acid/sodium alginate (HA/SA) scaffold-based interpenetrating polymeric network (IPN) for the proliferation and chondrogenic differentiation of the human adipose-derived stem cells (hADSCs). The hADSCs cultured in HA/SA IPN scaffold exhibited enhanced cell adhesion and proliferation compared to the HA scaffold. Superior chondrogenic differentiation of hADSCs in HA/SA IPN scaffold, compared to HA-based scaffold, was confirmed by measuring expression levels of chondrogenic markers. These results suggested that HA/SA IPN scaffold could provide a desirable environment for the cell adhesion, proliferation and chondrogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Yun-Jeong Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
The Implantable and Biodegradable PHBHHx 3D Scaffolds Loaded with Protein-Phospholipid Complex for Sustained Delivery of Proteins. Pharm Res 2012; 30:1077-85. [DOI: 10.1007/s11095-012-0944-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/19/2012] [Indexed: 11/26/2022]
|
8
|
Iafisco M, Palazzo B, Ito T, Otsuka M, Senna M, Delgado-Lopez JM, Gomez-Morales J, Tampieri A, Prat M, Rimondini L. Preparation of core-shell poly(L-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2659-2669. [PMID: 22864504 DOI: 10.1007/s10856-012-4732-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
In this paper, hybrid inorganic-organic core-shell hollow microspheres, made of poly(L-lactic acid) (PLLA) and biomimetic nano apatites (HA), were prepared from biodegradable and biocompatible substances, suitable for bone tissue applications. Preparation is started from Pickering emulsification, i.e., solid particle-stabilized emulsions in the absence of any molecular surfactant, where solid particles adsorbed to an oil-water interface. Stable oil-in-water emulsions were produced using biomimetic 20 nm sized HA nanocrystals as particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLLA as oil phase. Hybrid hollow PLLA microspheres at three different HA nanocrystals surface coverage, ranging from 10 to 50 μm, were produced. The resulting materials were completely characterized with spectroscopic, calorimetric and microscopic techniques and the cytocompatibility was established by indirect contact tests with both fibroblasts and osteoblasts and direct contact with these latter. They displayed a high level of cytocompatibility and thus represent promising materials for drug delivery systems, cell carriers and scaffolds for regeneration of bone useful in the treatment of orthopaedic, maxillofacial and dental fields.
Collapse
Affiliation(s)
- Michele Iafisco
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Niu X, Li X, Liu H, Zhou G, Feng Q, Cui F, Fan Y. Homogeneous Chitosan/Poly(L-Lactide) Composite Scaffolds Prepared by Emulsion Freeze-Drying. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:391-404. [DOI: 10.1163/092050610x551961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xufeng Niu
- a Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xiaoming Li
- b Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Haifeng Liu
- c Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Gang Zhou
- d Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Qingling Feng
- e State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fuzhai Cui
- f State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yubo Fan
- g Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
10
|
Ratakonda S, Sridhar UM, Rhinehart RR, Madihally SV. Assessing viscoelastic properties of chitosan scaffolds and validation with cyclical tests. Acta Biomater 2012; 8:1566-75. [PMID: 22200611 DOI: 10.1016/j.actbio.2011.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/21/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
We evaluated and modeled the viscoelastic characteristics of chitosan and chitosan-gelatin scaffolds prepared using a freeze-drying technique. Chitosan and chitosan-gelatin solutions (0.5 and 2 wt.%) were frozen at -80°C and freeze-dried. Using the scaffolds, uniaxial tensile properties were evaluated under physiological conditions (hydrated in phosphate buffered saline at 37°C) at a cross-head speed of 0.17 mms(-1) (10 mm min(-1)). From the break strain, the limit of strain per ramp was calculated to be 5% and the samples were stretched at a strain rate of 2.5%s(-1). The ramp-and-hold type of stress-relaxation test was performed for five successive stages. Chitosan and chitosan-gelatin showed nearly 90% relaxation of stress after each stage. The relaxation behavior was independent of the concentration of chitosan and gelatin. Also, changes in the microstructure of the tested samples were evaluated using an inverted microscope. The micrographs acquired after relaxation experiments showed orientation of pores, suggesting the retention of the stretched state even after many hours of relaxation. Based on these observations, two models (i) containing a hyper-elastic spring (containing two parameters) and (ii) retaining pseudo-components (containing three parameters) were developed in Visual Basic Applications accessed through MS Excel. The models were used to fit the experimental stress-relaxation data and the parameters obtained from modeling were used to predict their respective cyclic behaviors, which were compared with cyclical experimental results. These results showed that the model could be used to predict the cyclical behavior under the tested strain rates. The model predictions were also tested using cyclic properties at a lower strain rate of 0.0867%s(-1) (5%min(-1)) for 0.5 wt.% scaffolds but the model could not predict cyclical behavior at a very slow rate. In summary, the pseudo-component modeling approach can be used to model the sequential strain-and-hold stage and predict cyclical properties for the same strain rate.
Collapse
|
11
|
Hollister SJ, Murphy WL. Scaffold translation: barriers between concept and clinic. TISSUE ENGINEERING. PART B, REVIEWS 2011; 17:459-74. [PMID: 21902613 PMCID: PMC3223015 DOI: 10.1089/ten.teb.2011.0251] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/26/2011] [Indexed: 01/29/2023]
Abstract
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.
Collapse
Affiliation(s)
- Scott J Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
12
|
Pok S, Jacot JG. Biomaterials Advances in Patches for Congenital Heart Defect Repair. J Cardiovasc Transl Res 2011; 4:646-54. [DOI: 10.1007/s12265-011-9289-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
|
13
|
Hollister SJ. Scaffold design and manufacturing: from concept to clinic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3330-42. [PMID: 20882500 DOI: 10.1002/adma.200802977] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since Robert Langer and colleagues pioneered the concept of reconstructing tissue using cells transplanted on synthetic polymer matrices in the early 1990s, research in the field of tissue engineering and regenerative medicine has exploded. This is especially true in the development of new materials and structures that serve as scaffolds for tissue reconstruction. The basic tenet of the last two decades holds scaffolds as degradable materials providing temporary function while enhancing tissue regeneration through the delivery of biologics. Although a number of new scaffolding materials and structures have been developed in research laboratories, the application of such materials practice even has been extremely limited. This paper argues that better integration of all these factors is needed to bring scaffolds from "concept to clinic". It reviews current work in all these areas and suggests where future work and funding is needed.
Collapse
|
14
|
Yuan NY, Lin YA, Ho MH, Wang DM, Lai JY, Hsieh HJ. Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1495-1503. [PMID: 19259790 DOI: 10.1007/s10856-009-3707-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 02/06/2009] [Indexed: 05/27/2023]
Abstract
Chitosan crosslinked with glutaraldehyde or oxidised dextran was studied as a potential scaffold material in tissue engineering for cartilage regeneration. By mixing two solutions of both components it became a gel, which was frozen. After lyophilization a scaffold was generated with interconnected pores with diameters ranging between 120-350 microm. The mechanical properties (yielding point, elastic and viscous moduli), absolute porosity, pore morphology were determined depending on the ratio of chitosan to crosslinker. ATDC5 (murine cell line) and bovine articular chondrocytes (primary cells) were cultured for 14 days on the scaffolds. Cultivation with ATDC5 cells and bovine chondrocytes showed no negative influence of glutaraldehyde on cell vitality and growth.
Collapse
Affiliation(s)
- B Hoffmann
- Friedrich-Baur-Forschungsinstitute for Biomaterials, University of Bayreuth, Ludwig-Thoma-Street 36c, 95440 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
16
|
Lawrence BJ, Maase EL, Lin HK, Madihally SV. Multilayer composite scaffolds with mechanical properties similar to small intestinal submucosa. J Biomed Mater Res A 2009; 88:634-43. [PMID: 18314898 DOI: 10.1002/jbm.a.31903] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Use of biodegradable scaffolds to engineer new tissues has become an attractive option in various transplantation protocols. In particular, small intestinal submucosa (SIS) has generated immense interest in various tissue engineering applications because of its diverse favorable properties. However, it is a natural matrix, which leads to problems in large-scale preparations and contains sample to sample heterogeneity. In this study, we explored the formation of synthetic matrix mimicking the characteristics of the SIS. Three-dimensional composite structures were developed by sandwiching 50:50 PLGA film between porous chitosan matrices. The outer chitosan layers provide biological activity while the inner PLGA layer provides mechanical strength. PLGA films were initially perforated at 1 cm distance, and the porous chitosan matrix was formed sequentially on each side by controlled rate freezing and lyophilization technique at -80 degrees C. Scanning electron microscopy analysis showed a layered microarchitecture with chitosan filling the perforations of PLGA membrane. Urea permeability studies confirmed that the perforations were filled (negligible urea transfer across composite over 8 h). Tensile strength analysis showed that the matrices formed using 160 kDa PLGA had sufficient break stress ( approximately 4.5 MPa). Degradation analysis over 8 weeks in the presence of 10 mg/L lysozyme showed a 50% decrease in total weight and an 80% decrease in PLGA molecular weight. When cellular adhesion and actin distribution of mouse embryonic fibroblasts were evaluated, for 7 days, cells showed their typical spindle shape and redistribution of actin fibers on composite matrices. Viability studies and MMP-2/MMP-9 activity showed that the cells were viable and functional, similar to tissue culture plastic. Further, canine bladder smooth muscle cells also showed similar cell adhesion and spreading on the composite matrix. In summary, composite structures mimicking SIS were constructed and show potential as a tissue engineering material.
Collapse
Affiliation(s)
- Benjamin J Lawrence
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078
| | | | | | | |
Collapse
|
17
|
The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features. Biomaterials 2008; 30:703-10. [PMID: 19027949 DOI: 10.1016/j.biomaterials.2008.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022]
Abstract
Many synthetic and xenogenic natural matrices have been explored in tissue regeneration, however, they lack either mechanical strength or cell colonization characteristics found in natural tissue. Moreover natural matrices such as small intestinal submucosa (SIS) lack sample to sample homogeneity, leading to unpredictable clinical outcomes. This work explored a novel fabrication technique by blending together the useful characteristics of synthetic and natural polymers to form a composite structure by using a NaOH etching process that produces nanoscale surface features. The composite scaffold was formed by sandwiching a thin layer of PLGA between porous layers of gelatin-chitosan. The etching process increased the surface roughness of PLGA membrane, allowing easy spreading of the hydrophilic gelatin-chitosan solution on its hydrophobic surface and reducing the scaffold thickness by nearly 50% than otherwise. The viscoelastic properties of the scaffold, an area of mechanical analysis which remains largely unexplored in tissue regeneration was assessed. Stress relaxation experiments of the "ramp and hold" type performed at variable ranges of temperature (25 degrees C and 37 degrees C), loading rates (3.125% s(-1) and 12.5% s(-1)) and relaxation times (60 s, 100 s and 200 s) found stress relaxation to be sensitive to temperature and the loading rate but less dependent on the relaxation time. Stress relaxation behavior of the composite matrix was compared with SIS structures at 25 degrees C (hydrated), 3.125% s(-1) loading rate and 100 s relaxation time which showed that the synthetic matrix was found to be strain softening as compared to the strain hardening behavior exhibited by SIS. Popularly used quasi-linear viscoelastic (QLV) model to describe biomechanics of soft tissues was utilized. The QLV model predicted the loading behavior with an average error of 3%. The parameters of the QLV model predicted using nonlinear regression analysis appear to be in concurrence with soft tissues.
Collapse
|
18
|
Sarasam AR, Brown P, Khajotia SS, Dmytryk JJ, Madihally SV. Antibacterial activity of chitosan-based matrices on oral pathogens. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1083-90. [PMID: 17701312 DOI: 10.1007/s10856-007-3072-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 04/02/2007] [Indexed: 05/16/2023]
Abstract
Chitosan is a well sought-after polysaccharide in biomedical applications due to its biocompatibility, biodegradability to non-toxic substances, and ease of fabrication into various configurations. However, alterations in the anti-bacterial properties of chitosan in various forms is not completely understood. The objective of this study was to evaluate the anti-bacterial properties of chitosan matrices in different configurations against two pathogens-Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans. Two-dimensional (2-D) membranes and three-dimensional (3-D) porous scaffolds were synthesized by air drying and controlled-rate freeze drying. Matrices were suspended in bacterial broths with or without lysozyme (enzyme that degrades chitosan). Influences of pore size, blending with Polycaprolactone (PCL, a synthetic polymer), and neutralization process on bacterial proliferation were studied. Transient changes in optical density of the broth, adhesion characteristics, viability, and contact-dependent bacterial activity were assessed. 3-D porous scaffolds were more effective in reducing the proliferation of S. mutans in suspension than 2-D membranes. However, no significant differences were observed on the proliferation of A. actinomycetemcomitans. Presence of lysozyme significantly increased the antibacterial activity of chitosan against A. actinomycetemcomitans. Pore size did not affect the proliferation kinetics of either species, with or without lysozyme. NaOH neutralization of chitosan increased bacterial adhesion whereas ethanol neutralization inhibited adhesion without lowering proliferation. Mat culture tests indicated that chitosan does not allow proliferation on its surface and it loses antibacterial activity upon blending with PCL. Results suggest that the chemical and structural characteristics of chitosan-based matrices can be manipulated to influence the interaction of different bacterial species.
Collapse
Affiliation(s)
- Aparna R Sarasam
- School of Chemical Engineering, Oklahoma State University, 423 Engineering North, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
19
|
Sarasam AR, Samli AI, Hess L, Ihnat MA, Madihally SV. Blending Chitosan with Polycaprolactone: Porous Scaffolds and Toxicity. Macromol Biosci 2007; 7:1160-7. [PMID: 17703475 DOI: 10.1002/mabi.200700001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The preparation and characterization of porous scaffolds from chitosan-PCL blends by freeze extraction, freeze gelation and freeze drying is reported. Using freeze extraction, stable structures were obtained only from PCL, but these were not porous. No stable scaffolds were obtained using the freeze gelation process. Stable scaffolds of chitosan/PCL mixtures could not be obtained using 77% acetic acid by any of these techniques. With 25% aqueous acetic acid, stable scaffolds of chitosan/PCL mixtures were obtained by the freeze drying technique. The stability and pore morphology of freeze dried scaffolds were dependent on the relative mass ratio of chitosan and PCL. A chorioallantoic membrane assay showed that formed 3D chitosan/PCL mixtures were not toxic to vasculature.
Collapse
Affiliation(s)
- Aparna R Sarasam
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
20
|
Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007; 59:187-206. [PMID: 17540473 DOI: 10.1016/j.addr.2007.04.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 04/19/2007] [Indexed: 01/18/2023]
Abstract
Growing demand for tissues and organs for transplantation and the inability to meet this need using by autogeneic (from the host) or allogeneic (from the same species) sources has led to the rapid development of tissue engineering as an alternative. Tissue engineering aims to replace or facilitate the regrowth of damaged or diseased tissue by applying a combination of biomaterials, cells and bioactive molecules. This review focuses on synthetic polymers that have been used for tissue growth scaffold fabrication and their applications in both cell and extracellular matrix support and controlling the release of cell growth and differentiation supporting drugs.
Collapse
Affiliation(s)
- Marina Sokolsky-Papkov
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|