1
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
2
|
David TM, Dev PR, Wilson P, Sagayaraj P, Mathews T. A critical review on the variations in anodization parameters toward microstructural formation of TiO
2
nanotubes. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- T. Manovah David
- Thin Films and Coatings Section Surface Nanoscience Division Materials Science Group Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam India
| | - Priya Ranjan Dev
- Department of Chemistry Madras Christian College (Autonomous) University of Madras Chennai India
| | - P. Wilson
- Department of Chemistry Madras Christian College (Autonomous) University of Madras Chennai India
| | - P. Sagayaraj
- Department of Physics, Loyola College (Autonomous) Chennai India
| | - Tom Mathews
- Thin Films and Coatings Section Surface Nanoscience Division Materials Science Group Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam India
| |
Collapse
|
3
|
Hardman CT, Johnson HA, Doukas M, Pettit CC, Janorkar AV, Williamson RS, Roach MD. Photocatalytic, Phosphorous‐Doped, Anatase Oxide Layers Applicable to Titanium Implant Alloys. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C. T. Hardman
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - H. A. Johnson
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - M. Doukas
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - C. C. Pettit
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - A. V. Janorkar
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - R. S. Williamson
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| | - M. D. Roach
- Department of Biomedical Materials Science University of Mississippi Medical Center Jackson MS US
| |
Collapse
|
4
|
Abstract
Oxide layers on titanium foils were produced by galvanostatically controlled plasma electrolytic oxidation in 12.9 M sulfuric acid with small amounts of phosphoric acid added up to a 3% mole fraction. In pure sulfuric acid, the oxide layer is distinctly modified by plasma discharges. As the time of the process increases, rough surfaces with typical circular pores evolve. The predominant crystal phase of the titanium dioxide material is rutile. With the addition of phosphoric acid, discharge effects become less pronounced, and the predominant crystal phase changes to anatase. Furthermore, the oxide layer thickness and mass gain both increase. Already small amounts of phosphoric acid induce these effects. Our findings suggest that anions of phosphoric acid preferentially adsorb to the anodic area and suppress plasma discharges, and conventional anodization is promoted. The process was systematically investigated at different stages, and voltage and oxide formation efficiency were determined. Oxide surfaces and their cross-sections were studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The phase composition was determined by X-ray diffraction and confocal Raman microscopy.
Collapse
|
6
|
Jain S, Williamson RS, Janorkar AV, Griggs JA, Roach MD. Osteoblast response to nanostructured and phosphorus-enhanced titanium anodization surfaces. J Biomater Appl 2019; 34:419-430. [PMID: 31126206 DOI: 10.1177/0885328219852741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sakshi Jain
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - Jason A Griggs
- University of Mississippi Medical Center, Jackson, MS, USA
| | | |
Collapse
|
7
|
Roach M, Williamson R, Blakely I, Didier L. Tuning anatase and rutile phase ratios and nanoscale surface features by anodization processing onto titanium substrate surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:213-23. [DOI: 10.1016/j.msec.2015.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/16/2015] [Accepted: 08/21/2015] [Indexed: 11/15/2022]
|
8
|
Sul YT, Kwon DH, Kang BS, Oh SJ, Johansson C. Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants. Clin Oral Implants Res 2011; 24 Suppl A100:8-19. [DOI: 10.1111/j.1600-0501.2011.02355.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2011] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Byung-Soo Kang
- Department of Biomaterials; Institute for Clinical Sciences; Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Se-Jung Oh
- Department of Physics and Astronomy; Seoul National University; Seoul; Korea
| | - Carina Johansson
- Department of Prosthodontics/Dental Materials Science; Institute of Odontology; Sahlgrenska Academy; University of Gothenburg; Sweden
| |
Collapse
|
9
|
Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A 2009; 88:246-54. [DOI: 10.1002/jbm.a.31877] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|