• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4618910)   Today's Articles (1)   Subscriber (49402)
For: Fu Q, Rahaman MN, Bal BS, Huang W, Day DE. Preparation and bioactive characteristics of a porous 13-93 glass, and fabrication into the articulating surface of a proximal tibia. J Biomed Mater Res A 2007;82:222-9. [PMID: 17266021 DOI: 10.1002/jbm.a.31156] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Szczodra A, Houaoui A, Agniel R, Sicard L, Miettinen S, Massera J, Gorin C. Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regeneration. Acta Biomater 2024:S1742-7061(24)00436-7. [PMID: 39098444 DOI: 10.1016/j.actbio.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
2
Szczodra A, Houaoui A, Salminen T, Hannula M, Gobbo VA, Ghanavati S, Miettinen S, Massera J. Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024;35:17. [PMID: 38507150 PMCID: PMC10954867 DOI: 10.1007/s10856-024-06791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
3
Guo W, Li B, Li P, Zhao L, You H, Long Y. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds. J Mater Chem B 2023;11:9572-9596. [PMID: 37727909 DOI: 10.1039/d3tb01236k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
4
Mecca FG, Bellucci D, Cannillo V. Effect of Thermal Treatments and Ion Substitution on Sintering and Crystallization of Bioactive Glasses: A Review. MATERIALS (BASEL, SWITZERLAND) 2023;16:4651. [PMID: 37444965 DOI: 10.3390/ma16134651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
5
Abodunrin OD, El Mabrouk K, Bricha M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications. J Mater Chem B 2023;11:955-973. [PMID: 36633185 DOI: 10.1039/d2tb02505a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
6
Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2023;156:110-124. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023]
7
Homaeigohar S, Li M, Boccaccini AR. Bioactive glass-based fibrous wound dressings. BURNS & TRAUMA 2022;10:tkac038. [PMID: 36196303 PMCID: PMC9519693 DOI: 10.1093/burnst/tkac038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
8
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
9
Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O'Donnell MD, Lange C, Seidt BM, Kim TB, Solanki AK, Tallia F, Young G, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MM. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials 2019;209:152-162. [PMID: 31048149 PMCID: PMC6527862 DOI: 10.1016/j.biomaterials.2019.03.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
10
Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018;93:341-355. [DOI: 10.1016/j.msec.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/04/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
11
Magnesium-based bioceramics in orthopedic applications. Acta Biomater 2018;66:23-43. [PMID: 29197578 DOI: 10.1016/j.actbio.2017.11.033] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/22/2022]
12
Thomas A, Kolan KC, Leu MC, Hilmas GE. Freeform extrusion fabrication of titanium fiber reinforced 13–93 bioactive glass scaffolds. J Mech Behav Biomed Mater 2017;70:43-52. [DOI: 10.1016/j.jmbbm.2016.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/25/2022]
13
Freeform extrusion fabrication of titanium fiber reinforced 13–93 bioactive glass scaffolds. J Mech Behav Biomed Mater 2017;69:153-162. [DOI: 10.1016/j.jmbbm.2016.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/22/2022]
14
Höner M, Böke F, Weber M, Fischer H. Mimicking physiological flow conditions to study alterations of bioactive glass surfaces in vitro. J Biomed Mater Res B Appl Biomater 2017;106:228-236. [PMID: 28130877 DOI: 10.1002/jbm.b.33847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/24/2016] [Indexed: 11/11/2022]
15
Fabert M, Ojha N, Erasmus E, Hannula M, Hokka M, Hyttinen J, Rocherullé J, Sigalas I, Massera J. Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering. J Mater Chem B 2017;5:4514-4525. [DOI: 10.1039/c7tb00106a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Novajra G, Boetti N, Lousteau J, Fiorilli S, Milanese D, Vitale-Brovarone C. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016;67:570-580. [DOI: 10.1016/j.msec.2016.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/07/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
17
Anita Lett J, Sundareswari M, Ravichandran K. Porous hydroxyapatite scaffolds for orthopedic and dental applications - the role of binders. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
18
Jagan Mohini G, Sahaya Baskaran G, Ravi Kumar V, Piasecki M, Veeraiah N. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015;57:240-8. [DOI: 10.1016/j.msec.2015.07.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/19/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
19
Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc 2014;22:1434-44. [PMID: 23370989 DOI: 10.1007/s00167-013-2426-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/21/2013] [Indexed: 01/22/2023]
20
Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2013;23:5461-5476. [PMID: 29527148 PMCID: PMC5844579 DOI: 10.1002/adfm.201301121] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
21
Kolan KCR, Leu MC, Hilmas GE, Velez M. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater 2012;13:14-24. [PMID: 22842272 DOI: 10.1016/j.jmbbm.2012.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/24/2023]
22
Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta Biomater 2012;8:415-23. [PMID: 21855661 DOI: 10.1016/j.actbio.2011.07.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/13/2011] [Accepted: 07/29/2011] [Indexed: 11/22/2022]
23
Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011;31:1245-1256. [PMID: 21912447 PMCID: PMC3169803 DOI: 10.1016/j.msec.2011.04.022] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
24
Huang T, Rahaman M, Doiphode N, Leu M, Bal B, Day D, Liu X. Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
25
Jayabalan P, Tan AR, Rahaman MN, Bal BS, Hung CT, Cook JL. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study. Clin Orthop Relat Res 2011;469:2754-63. [PMID: 21365338 PMCID: PMC3171527 DOI: 10.1007/s11999-011-1818-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
26
Kolan KCR, Leu MC, Hilmas GE, Brown RF, Velez M. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication 2011;3:025004. [PMID: 21636879 DOI: 10.1088/1758-5082/3/2/025004] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
27
Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011;7:2355-73. [PMID: 21421084 DOI: 10.1016/j.actbio.2011.03.016] [Citation(s) in RCA: 794] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 01/18/2023]
28
Fu Q, Saiz E, Tomsia AP. Bioinspired Strong and Highly Porous Glass Scaffolds. ADVANCED FUNCTIONAL MATERIALS 2011;21:1058-1063. [PMID: 21544222 PMCID: PMC3085453 DOI: 10.1002/adfm.201002030] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
29
Doiphode ND, Huang T, Leu MC, Rahaman MN, Day DE. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011;22:515-523. [PMID: 21279671 DOI: 10.1007/s10856-011-4236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/12/2011] [Indexed: 05/30/2023]
30
Will J, Gerhardt LC, Boccaccini AR. Bioactive glass-based scaffolds for bone tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011;126:195-226. [PMID: 22085919 DOI: 10.1007/10_2011_106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
31
Fu Q, Rahaman MN, Bal BS, Kuroki K, Brown RF. In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. J Biomed Mater Res A 2010;95:235-44. [PMID: 20574983 DOI: 10.1002/jbm.a.32827] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
32
Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010;95:164-71. [PMID: 20544804 DOI: 10.1002/jbm.a.32824] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
33
Fu Q, Rahaman MN, Bal BS, Brown RF. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res A 2010;93:1380-90. [PMID: 19911380 DOI: 10.1002/jbm.a.32637] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
34
Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 2010;95:172-9. [DOI: 10.1002/jbm.a.32823] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
35
Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2010;3:3867-3910. [PMID: 28883315 PMCID: PMC5445790 DOI: 10.3390/ma3073867] [Citation(s) in RCA: 447] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/29/2010] [Indexed: 12/24/2022]
36
Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL. In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater 2010;93:164-74. [PMID: 20091911 DOI: 10.1002/jbm.b.31571] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
37
Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution. Biomed Mater 2010;5:15005. [DOI: 10.1088/1748-6041/5/1/015005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
38
Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2009;7:209-27. [PMID: 19864265 DOI: 10.1098/rsif.2009.0379] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
39
Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.05.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
40
Teixeira S, Rodriguez M, Pena P, De Aza A, De Aza S, Ferraz M, Monteiro F. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.052] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
41
Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution. Acta Biomater 2009;5:1265-73. [PMID: 19119086 DOI: 10.1016/j.actbio.2008.11.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/14/2008] [Accepted: 11/19/2008] [Indexed: 11/23/2022]
42
Fu Q, Rahaman MN, Bal BS, Brown RF. Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009;20:1159-1165. [PMID: 19115092 DOI: 10.1007/s10856-008-3668-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
43
Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 2008;4:1854-64. [PMID: 18519173 DOI: 10.1016/j.actbio.2008.04.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/17/2008] [Accepted: 04/24/2008] [Indexed: 12/01/2022]
44
Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J Biomed Mater Res B Appl Biomater 2008;86:514-22. [PMID: 18338786 DOI: 10.1002/jbm.b.31051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
45
Rahaman MN, Li Y, Bal BS, Huang W. Functionally graded bioactive glass coating on magnesia partially stabilized zirconia (Mg-PSZ) for enhanced biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008;19:2325-2333. [PMID: 18157512 DOI: 10.1007/s10856-007-3328-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/19/2007] [Indexed: 05/25/2023]
46
Fu Q, Rahaman MN, Dogan F, Bal BS. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomed Mater 2008;3:025005. [DOI: 10.1088/1748-6041/3/2/025005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA