2
|
DOU X, WANG Y, HE J, XU X. R.T.R ® promotes bone marrow mesenchymal stem cells osteogenic differentiation by upregulating BMPs/SMAD induced cbfa1 expression. Dent Mater J 2019; 38:764-770. [DOI: 10.4012/dmj.2018-306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaochen DOU
- School of Stomatology of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province
| | - Yuanyin WANG
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province
| | - Jiacai HE
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province
| | - Xin XU
- School of Stomatology of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration
| |
Collapse
|
3
|
He Y, Li Y, Chen G, Wei C, Zhang X, Zeng B, Yi C, Wang C, Yu D. Concentration‐dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. J Biomed Mater Res A 2019; 108:50-60. [PMID: 31443121 DOI: 10.1002/jbm.a.36791] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Guanhui Chen
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Changbo Wei
- The Affiliated Stomatological Hospital of Soochow UniversitySuzhou Stomatological Hospital Jiangsu China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Chao Wang
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| |
Collapse
|
4
|
Balla VK, Dey S, Muthuchamy AA, Janaki Ram GD, Das M, Bandyopadhyay A. Laser surface modification of 316L stainless steel. J Biomed Mater Res B Appl Biomater 2017; 106:569-577. [PMID: 28245086 DOI: 10.1002/jbm.b.33872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/03/2017] [Accepted: 02/13/2017] [Indexed: 11/09/2022]
Abstract
Medical grade 316L stainless steel was laser surface melted (LSM) using continuous wave Nd-YAG laser in argon atmosphere at 1 and 5 mm/s. The treated surfaces were characterized using electron backscatter diffraction to study the influence of top surface crystallographic orientation and type of grain boundaries on corrosion resistance, wettability, and biocompatibility. The laser scan velocity was found to have a marginal influence on the surface roughness and the type of grain boundaries. However, the crystal orientation density was found to be relatively high in 1 mm/s samples. The LSM samples showed a higher concentration of {101} and {123} planes parallel to the sample surface as well as a higher fraction of low-angle grain boundaries. The LSM samples were found to exhibit better surface wettability and enhanced the viability and proliferation of human fetal osteoblast cells in vitro when compared to the untreated samples. Further, the corrosion protection efficiency of 316L stainless steel was improved up to 70% by LSM in as-processed condition. The increased concentration of {101} and {123} planes on surfaces of LSM samples increases their surface energy, which is believed to be responsible for the improved in vitro cell proliferation. Further, the increased lattice spacing of these planes and high concentration of low-energy grain boundaries in LSM samples would have contributed to the better in vitro corrosion resistance than untreated 316L stainless steel. Our results indicate that LSM can be a potential treatment option for 316L stainless steel-based biomedical devices to improve biocompatibility and corrosion resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 569-577, 2018.
Collapse
Affiliation(s)
- Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute (CGCRI), 196, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sangeetha Dey
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute (CGCRI), 196, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Adiyen A Muthuchamy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - G D Janaki Ram
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mitun Das
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute (CGCRI), 196, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Amit Bandyopadhyay
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99163
| |
Collapse
|
5
|
Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014; 71:113-42. [PMID: 23568025 PMCID: PMC11113514 DOI: 10.1007/s00018-013-1326-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/04/2023]
Abstract
Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
Collapse
Affiliation(s)
- P. Chatakun
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Police General Hospital, Bangkok, Thailand
| | - R. Núñez-Toldrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. J. Díaz López
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - C. Gil-Recio
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Martínez-Sarrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - F. Hernández-Alfaro
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Ferrés-Padró
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Oral and Maxillofacial Surgery Department, Fundacio Hospital de Nens de Barcelona, Barcelona, Spain
| | - L. Giner-Tarrida
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M. Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
6
|
Gallardo-Moreno A, Multigner M, Calzado-Martín A, Méndez-Vilas A, Saldaña L, Galván J, Pacha-Olivenza M, Perera-Núñez J, González-Carrasco J, Braceras I, Vilaboa N, González-Martín M. Bacterial adhesion reduction on a biocompatible Si+ ion implanted austenitic stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|